File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이준희

Lee, Jun Hee
Quantum Materials for Energy Conversion Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Magnetic field-temperature phase diagram of multiferroic (NH4)2FeCl5·H2O

Author(s)
Clune, Amanda J.Nam, JisooLee, MinseongHughey, Kendall D.Tian, WeiFernandez-Baca, Jaime A.Fishman, Randy S.Singleton, JohnLee, Jun HeeMusfeldt, Janice L.
Issued Date
2019-08
DOI
10.1038/s41535-019-0180-1
URI
https://scholarworks.unist.ac.kr/handle/201301/30377
Fulltext
https://www.nature.com/articles/s41535-019-0180-1
Citation
NPJ QUANTUM MATERIALS, v.4, no.1, pp.44
Abstract
Owing to their overall low energy scales, flexible molecular architectures, and ease of chemical substitution, molecule-based multiferroics are extraordinarily responsive to external stimuli and exhibit remarkably rich phase diagrams. Even so, the stability and microscopic properties of various magnetic states in close proximity to quantum critical points are highly under-explored in these materials. Inspired by these opportunities, we combined pulsed-field magnetization, first-principles calculations, and numerical simulations to reveal the magnetic field–temperature (B–T) phase diagram of multiferroic (NH4)2FeCl5⋅H2O. In this system, a network of intermolecular hydrogen and halogen bonds creates a competing set of exchange interactions that generates additional structure in the phase diagram—both in the vicinity of the spin flop and near the 30 T transition to the fully saturated state. Consequently, the phase diagrams of (NH4)2FeCl5⋅H2O and its deuterated analog are much more complex than those of other molecule-based multiferroics. The entire series of coupled electric and magnetic transitions can be accessed with a powered magnet, opening the door to exploration and control of properties in this and related materials.
Publisher
NATURE PUBLISHING GROUP
ISSN
2397-4648
Keyword
LATTICE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.