File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Carbon-supported ultra-high loading Pt nanoparticle catalyst by controlled overgrowth of Pt: Improvement of Pt utilization leads to enhanced direct methanol fuel cell performance

Author(s)
You, Dae JongKwon, KyungjungJoo, Sang HoonKim, Jin HoeKim, Ji ManPak, ChanhoChang, Hyuk
Issued Date
2012-04
DOI
10.1016/j.ijhydene.2012.01.103
URI
https://scholarworks.unist.ac.kr/handle/201301/2993
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84859219234
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.37, no.8, pp.6880 - 6885
Abstract
Carbon-supported Pt nanoparticle catalysts with ultra-high loading up to 85% are prepared by multi-step reduction (Pt/C-nR), in which additional Pt precursors are reduced upon a preformed Pt/C catalyst (Pt/C-1R). Transmission electron microscopy images show that the Pt/C-nR catalysts are composed of multilayers of Pt nanoparticles. The multiply stacked morphology in the Pt/C-nR catalysts may originate from the local overgrowth of additionally reduced Pt nanoparticles on the pre-existing Pt nanoparticles in the Pt/C-1R catalyst rather than conformal growth. The electrochemical characterizations by cyclic voltammograms in HClO4 solution reveal that Pt/C-2R catalyst exhibits an increased Pt utilization over the Pt/C-1R catalyst of the same Pt loading on the carbon support where a significant portion of catalytically active surfaces are buried within micropores of carbons. Furthermore, a direct methanol fuel cell (DMFC) single cell employing Pt/C-2R catalyst exhibits an enhanced DMFC performance compared to a single cell using the Pt/C-1R catalyst, demonstrating the importance of morphological control of Pt nanoparticles that can improve the catalyst utilization.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
ISSN
0360-3199
Keyword (Author)
Pt nanoparticleUltra-high metal loadingMulti-step reductionCatalyst utilizationDirect methanol fuel cell
Keyword
ELECTROCATALYTIC ACTIVITYOXYGEN REDUCTIONCATHODE CATALYSTPOLYOL SYNTHESISPARTICLE-SIZEPLATINUMOXIDATIONELECTROLYTEACID

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.