BROWSE

Related Researcher

Author's Photo

Lee, Hyun-Wook
Energy Storage and Electron Microscopy Laboratory
Research Interests
  • Energy storage, secondary batteries, transmission electron microscopy, real time analysis

ITEM VIEW & DOWNLOAD

Highly robust silicon bimorph plate anode and its mechanical analysis upon electrochemical lithiation

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Highly robust silicon bimorph plate anode and its mechanical analysis upon electrochemical lithiation
Author
Kim, YeongaeSim, SoojinKang, SujinYun, JeonghunLee, Hyun-WookLee, Seok Woo
Issue Date
2019-12
Publisher
ELSEVIER
Citation
ENERGY STORAGE MATERIALS, v.23, pp.292 - 298
Abstract
As the need for smaller, lighter, and longer lasting energy storage increases, silicon (Si) rises as a promising anode material of lithium (Li) ion batteries due to large specific capacity. However, the Si undergoes severe volume expansion causing mechanical fracture and electrochemical degradation. The use of nanostructured Si prevents mechanical fracture, but its large surface area enables irreversible side reaction. Therefore, understanding the mechanical behavior of lithiated Si (LixSi) is essential for designing robust Si structures with less surface area. Here, we estimate the stress in LixSi on crystalline-Si (c-Si) and copper bimorph plate and study its fracture resistance. When LixSi and c-Si coexisted, LixSi exhibits ∼50% of the full lithiation and compression of ∼0.55 GPa, which is smaller than its yield strength. After c-Si is removed, it is predicted that plastic deformation of LixSi would occur on the open surface of the plate, but most of the structure would remain in the elastic behavior regime. The low stress in the LixSi plate allows it to bear fractures up to much larger size (∼2 μm) than that of Si nanoparticles and nanopillars. It suggests using the robust micron-scale silicon structure for highly reversible and cost effective anode of Li-ion batteries.
URI
https://scholarworks.unist.ac.kr/handle/201301/27468
URL
https://www.sciencedirect.com/science/article/pii/S2405829719300212
DOI
10.1016/j.ensm.2019.04.045
ISSN
2405-8297
Appears in Collections:
ECHE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU