BROWSE

Related Researcher

Author's Photo

Cha, Dong-Hyun
High-impact Weather Prediction Lab (HWPL)
Research Interests
  • Typhoon Modeling, Regional Climate Modeling, High-impact Weather

ITEM VIEW & DOWNLOAD

Impacts of the East Asian Winter Monsoon and Local Sea Surface Temperature on Heavy Snowfall over the Yeongdong Region

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Impacts of the East Asian Winter Monsoon and Local Sea Surface Temperature on Heavy Snowfall over the Yeongdong Region
Author
Kim, JineunYoon, DonghyuckCha, Dong-HyunChoi, YonghanKim, JoowanSon, Seok-Woo
Issue Date
2019-10
Publisher
American Meteorological Society
Citation
JOURNAL OF CLIMATE, v.32, no.20, pp.6783 - 6802
Abstract
This research investigates the impact of local sea surface temperature (SST) on the 2-month (January and February) accumulated snowfall over the Yeongdong (YD) region. The YD region is strongly affected by synoptic-scale factors such as the East Asian winter monsoon (EAWM). The relationships of snowfall over the YD region to the EAWM and local SST are examined based on observational analyses and sensitivity experiments using a regional climate model. In the sensitivity experiments, local SST is replaced with the 33-yr mean winter SST (1982–2014). The observational analysis shows that both the synoptic environment and local SST are important factors for the occurrence of anomalous heavy snowfall over the YD region. The favorable synoptic environments can be characterized by eastward expansion of the Siberian high over Manchuria and corresponding enhancement of easterly anomalies over the YD region. These conditions are more frequently observed during the weak EAWM years than during the strong EAWM. Furthermore, warm SST over the East Sea contributes to heavy snowfall over the YD region by providing heat and moisture in the lower troposphere, which are important sources of energy for the formation of heavy snowfall. Warm SST anomalies over the East Sea enhance low-level moisture convergence over the YD region, while cold SST anomalies lead to reduced moisture convergence. Sensitivity experiments indicate that local SST can significantly affect snowfall amount over the YD region when the synoptic environments are favorable. However, without these synoptic conditions (expansion of the Siberian high and easterly inflow), the impact of local SST on the snowfall over the YD region is not significant.
URI
https://scholarworks.unist.ac.kr/handle/201301/27447
URL
https://journals.ametsoc.org/doi/10.1175/JCLI-D-18-0411.1
DOI
10.1175/jcli-d-18-0411.1
ISSN
0894-8755
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU