File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

안광진

An, Kwangjin
Advanced Nanocatalysis Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Highly dispersed Pd catalysts supported on various carbons for furfural hydrogenation

Author(s)
Lee, JihyeonWoo, JinwooChinh Nguyen-HuyLee, Man SigJoo, Sang HoonAn, Kwangjin
Issued Date
2020-06
DOI
10.1016/j.cattod.2019.06.032
URI
https://scholarworks.unist.ac.kr/handle/201301/27072
Fulltext
https://www.sciencedirect.com/science/article/pii/S092058611930313X
Citation
CATALYSIS TODAY, v.350, pp.71 - 79
Abstract
Furfural (FAL), one of the important platform molecules derived from lignocellulosic biomass, can be converted into valuable chemicals such as furfuryl alcohol or cyclopentanone via hydrogenation. While carbon materials have been used as versatile catalyst supports for FAL hydrogenation, systematic studies on the structure of the catalytic performances are lacking. In this work, we prepare various types of carbon supports to investigate the impact of carbon structures for Pd-catalyzed FAL hydrogenation. Mesoporous carbons, including CMK-3, CMK-5, CMK-8, and MSU-F-C, as well as carbon nanotube and Vulcan XC are used as carbon supports. For the preparation of highly dispersed Pd-supported carbon (Pd/C) catalysts, chemical reduction by sodium borohydride is applied, in which trisodium citrate plays a critical role in anchoring small Pd clusters on the carbons. In the liquid-phase hydrogenation of FAL, CMK-5 with the largest surface area and hexagonal hollow tubular framework is proven to be the most efficient carbon support for Pd/C catalysts, with the highest conversion of FAL in both 2-propanol (100%) and water (86.4%) solvents. It is also demonstrated that the product selectivity in FAL hydrogenation over various Pd/C catalysts is changed dramatically depending on the type of solvent. The Pd/C catalysts exhibit similar fractions of product distributions containing furfuryl alcohol, cyclopentanol, tetrahydrofurfuryl alcohol, and minor products in 2-propanol. However, the production of cyclopentanone is increased when water is used as a solvent.
Publisher
ELSEVIER
ISSN
0920-5861
Keyword
SELECTIVE HYDROGENATIONMESOPOROUS CARBONCONVERSIONBIOMASSEFFICIENTFUELCYCLOPENTANONEHEMICELLULOSENANOPARTICLESSTRATEGY

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.