File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run

Author(s)
Abbott, BPKim, Y.-M.
Issued Date
2019-05
DOI
10.1103/PhysRevD.99.104033
URI
https://scholarworks.unist.ac.kr/handle/201301/26882
Fulltext
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.104033
Citation
PHYSICAL REVIEW D, v.99, no.10, pp.104033
Abstract
We present the results of a search for long-duration gravitational-wave transients in the data from the Advanced LIGO second observation run; we search for gravitational-wave transients of 2-500 s duration in the 24-2048 Hz frequency band with minimal assumptions about signal properties such as waveform morphologies, polarization, sky location or time of occurrence. Signal families covered by these search algorithms include fallback accretion onto neutron stars, broadband chirps from innermost stable circular orbit waves around rotating black holes, eccentric inspiral-merger-ringdown compact binary coalescence waveforms, and other models. The second observation run totals about 118.3 days of coincident data between November 2016 and August 2017. We find no significant events within the parameter space that we searched, apart from the already-reported binary neutron star merger GW170817. We thus report sensitivity limits on the root-sum-square strain amplitude h(rss) at 50% efficiency. These sensitivity estimates are an improvement relative to the first observing run and also done with an enlarged set of gravitational-wave transient waveforms. Overall, the best search sensitivity is h(rss)(50%) = 2.7 x 10(-22) Hz(-1/2) for a millisecond magnetar model. For eccentric compact binary coalescence signals, the search sensitivity reaches h(rss)(50%) = 9.6 x 10(-22) Hz(-1/2).
Publisher
AMER PHYSICAL SOC
ISSN
2470-0010
Keyword
RADIATIONFORMS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.