Surface-enhanced Raman scattering (SERS) is ideally suited for probing and mapping surface species and incipient phases on fuel cell electrodes because of its high sensitivity and surface-selectivity, potentially offering insights into the mechanisms of chemical and energy transformation processes. In particular, bimetal nanostructures of coinage metals (Au, Ag, and Cu) have attracted much attention as SERS-active agents due to their distinctive electromagnetic field enhancements originated from surface plasmon resonance. Here we report excellent SERS-active, raspberry-like nanostructures composed of a silver (Ag) nanoparticle core decorated with smaller copper (Cu) nanoparticles, which displayed enhanced and broadened UV-Vis absorption spectra. These unique Ag@Cu raspberry nanostructures enable us to use blue, green, and red light as the excitation laser source for surface-enhanced Raman spectroscopy (SERS) with a large enhancement factor (EF). A highly reliable SERS effect was demonstrated using Rhodamine 6G (R6G) molecules and a thin film of gadolinium doped ceria.