Related Researcher

Author's Photo

Jeong, Hu Young
UNIST Central Research Facilities (UCRF)
Research Interests
  • Soft material characterization such as graphene using a low kV Cs-corrected TEM


Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors

Cited 0 times inthomson ciCited 0 times inthomson ci
Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors
Wang, YanKim, Jong ChanWu, Ryan J.Martinez, JennySong, XiujuYang, JieunZhao, FangMkhoyan, AndreJeong, Hu YoungChhowalla, Manish
Issue Date
NATURE, v.568, no.7750, pp.70 - 74
As the dimensions of the semiconducting channels in fieldeffect transistors decrease, the contact resistance of the metalsemiconductor interface at the source and drain electrodes increases, dominating the performance of devices(1-3). Two-dimensional (2D) transition-metal dichalcogenides such as molybdenum disulfide (MoS2) have been demonstrated to be excellent semiconductors for ultrathin field-effect transistors(4,5). However, unusually high contact resistance has been observed across the interface between the metal and the 2D transition-metal dichalcogenide(3,5-9). Recent studies have shown that van der Waals contacts formed by transferred graphene(10,11) and metals(12) on few-layered transitionmetal dichalcogenides produce good contact properties. However, van der Waals contacts between a three-dimensional metal and a monolayer 2D transition-metal dichalcogenide have yet to be demonstrated. Here we report the realization of ultraclean van der Waals contacts between 10-nanometre-thick indium metal capped with 100-nanometre-thick gold electrodes and monolayer MoS2. Using scanning transmission electron microscopy imaging, we show that the indium and gold layers form a solid solution after annealing at 200 degrees Celsius and that the interface between the gold-capped indium and the MoS2 is atomically sharp with no detectable chemical interaction between the metal and the 2D transition-metal dichalcogenide, suggesting van-der-Waals-type bonding between the gold-capped indium and monolayer MoS2. The contact resistance of the indium/gold electrodes is 3,000 +/- 300 ohm micrometres for monolayer MoS2 and 800 +/- 200 ohm micrometres for few-layered MoS2. These values are among the lowest observed for three-dimensional metal electrodes evaporated onto MoS2, enabling high-performance field-effect transistors with a mobility of 167 +/- 20 square centimetres per volt per second. We also demonstrate a low contact resistance of 220 +/- 50 ohm micrometres on ultrathin niobium disulfide (NbS2) and near-ideal band offsets, indicative of defect-free interfaces, in tungsten disulfide (WS2) and tungsten diselenide (WSe2) contacted with indium alloy. Our work provides a simple method of making ultraclean van der Waals contacts using standard laboratory technology on monolayer 2D semiconductors.
Appears in Collections:
UCRF_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record


  • mendeley


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.