File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Thickness Tunable Wedding-Cake-like MoS2 Flakes for High-Performance Optoelectronics

Author(s)
Yang, PengfeiZhang, ZhepengSun, MengxingLin, FengCheng, TingShi, JianpingXie, ChunyuShi, YupingJiang, ShaolongHuan, YahuanLiu, PorunDing, FengXiong, ChunyangXie, DanZhang, Yanfeng
Issued Date
2019-03
DOI
10.1021/acsnano.9b00277
URI
https://scholarworks.unist.ac.kr/handle/201301/26547
Fulltext
https://pubs.acs.org/doi/10.1021/acsnano.9b00277
Citation
ACS NANO, v.13, no.3, pp.3649 - 3658
Abstract
Atomically thin transition-metal dichalcogenides (TMDCs) have received substantial interest due to their typical thickness-dependent optical and electronic properties and related applications in optoelectronics. However, the large-scale, thickness-tunable growth of such materials is still challenging. Herein, we report a fast growth of thickness-tunable wedding-cake-like MoS2 flakes on 6-in. soda-lime glass by using NaCl-coated Mo foils as metal precursors. The MoS2 thicknesses are tuned from one layer (1L) to >20L by controlling the concentrations of NaCl promoter. To attest to the ultrahigh crystal quality, related devices based on 1L-multilayer MoS2 lateral junctions have been constructed and display a relatively high rectification ratio (similar to 10(3)) and extra high photoresponsitivity (similar to 10(4) A/W). Thanks to the scalable sizes, uniform distributions of the flakes and homogeneous optical properties, the applications in ultraviolet (UV) irradiation filtering eyewear are also demonstrated. Our work should hereby propel the scalable production of layer-controlled TMDC materials as well as their optical and optoelectrical applications.
Publisher
AMER CHEMICAL SOC
ISSN
1936-0851
Keyword (Author)
thickness tunablemolybdenum disulfideglasslarge areaoptoelectronics
Keyword
TRANSITION-METAL DICHALCOGENIDESVAPOR-PHASE GROWTHWAFER-SCALEEPITAXIAL-GROWTHMONOLAYERHETEROSTRUCTURESPHOTOLUMINESCENCEPROLIFERATIONGENERATIONADHESION

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.