Carbon nanotube (CNT) networks on solid substrates have recently drawn attention as a means to direct the growth and differentiation of stem cells. However, it is still not clear whether cells can recognize individual CNTs with a sub-2 nm diameter, and directional nanostructured substrates such as aligned CNT networks have not been utilized to control cell behaviors. Herein, we report that human mesenchymal stem cells (hMSCs) grown on CNT networks could recognize the arrangement of individual CNTs in the CNT networks, which allowed us to control the growth direction and differentiation of the hMSCs. We achieved the directional growth of hMSCs following the alignment direction of the individual CNTs. Furthermore, hMSCs on aligned CNT networks exhibited enhanced proliferation and osteogenic differentiation compared to those on randomly oriented CNT networks. As a plausible explanation for the enhanced proliferation and osteogenic differentiation, we proposed mechanotransduction pathways triggered by high cytoskeletal tension in the aligned hMSCs. Our findings provide new insights regarding the capability of cells to recognize nanostructures smaller than proteins and Indicate their potential applications for regenerative tissue engineering.