BROWSE

Related Researcher

Author's Photo

UNIST, Researcher
UNIST
Research Interests
  • All Subjects

ITEM VIEW & DOWNLOAD

The effect of confinement on the stability of field induced states and on supercooling in antiferro-ferroelectric phase transitions in chiral smectic liquid crystals

Cited 3 times inthomson ciCited 1 times inthomson ci
Title
The effect of confinement on the stability of field induced states and on supercooling in antiferro-ferroelectric phase transitions in chiral smectic liquid crystals
Author
Song, Jang-KunVij, J. K.
Keywords
AC field; Antiferroelectrics; Applied field; Cell thickness; Chiral smectic liquid crystals; Ferroelectric phase transition; Ferroelectric phasis; Field induced; Hysteresis phenomenon; Large hysteresis; Layered Structures; Solitary wave; Subphases; Thermotropic phasis; Thin cells; Tilt angle
Issue Date
2009-10
Publisher
AMER INST PHYSICS
Citation
JOURNAL OF APPLIED PHYSICS, v.106, no.7, pp. -
Abstract
We investigate both the supercooling and the hysteresis phenomena of the phase transitions between the smectic C* and the smectic C * Aphases driven by temperature and electric field, respectively. These two phenomena show similar characteristics for the dependence of transmittance on both the cell thickness and the applied field. The mechanisms for large supercooling and large hysteresis in thin cells are shown to correspond to the suppression of the propagation of solitary wave by the surfaces. Furthermore, these two phenomena are shown to be controlled by a moderate ac field applied across the cell. We present a clear evidence for the existence of at least two field induced subphases (called states here) between the antiferroelectric and the ferroelectric phases. These are found to correspond to the field induced three-layered and four-layered structures through a comparison of experimental results on the tilt angle and its simulation as well as by discrete changes in the texture by increasing the electric field. The correspondence between the thermotropic phases and the field induced states is demonstrated through measurements of the supercooling/ superheating and of the hysteresis as a function of the cell thickness. The instability in the field induced states depends strongly on the cell thickness, and the various states are not observed in a cell of 1.6 μm thickness.
URI
Go to Link
DOI
10.1063/1.3226865
ISSN
0021-8979
Appears in Collections:
ECE_Journal Papers
Files in This Item:
000270915600036.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU