BROWSE

Related Researcher

Author's Photo

Ding, Feng
IBS - Center for Multidimensional Carbon Materials (CMCM)
Research Interests
  • Theoretical methods development for materials studies.

ITEM VIEW & DOWNLOAD

In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium-sulfur batteries

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium-sulfur batteries
Author
Song, YingzeZhao, WenWei, NanZhang, LiDing, FengLiu, ZhongfanSun, Jingyu
Keywords
high sulfur loading;  hybrid host;  in situ assembly;  lithium-sulfur batteries;  vanadium disulfide
Issue Date
2018-11
Publisher
Elsevier BV
Citation
NANO ENERGY, v.53, no., pp.432 - 439
Abstract
Lithium-sulfur (Li-S) batteries have been regarded as promising candidates for current energy-storage technologies due to their remarkable advantages in energy density and theoretical capacity. However, one of the daunting challenges remained for advanced Li-S systems thus far deals with the synchronous suppression of polysulfide (LiPS) shuttle and acceleration of redox kinetics. Herein, a cooperative interface bridging adsorptive V2O3 and conductive graphene is constructed in-situ by virtue of direct plasma-enhanced chemical vapor deposition (PECVD), resulting in the design of a novel V2O3-graphene hybrid host to synergize the LiPS entrapment and conversion. The redox kinetics and electrochemical performances of thus-derived cathodes were accordingly enhanced owing to the smooth adsorption-diffusion-conversion of LiPSs even at a sulfur mass loading of 3.7 mg cm(-2). Such interfacial engineering offers us a valuable opportunity to gain insight into the comprehensive regulation of LiPS anchoring ability, electrical conductivity and ion diffusive capability in hybrid hosts on suppressing the LiPS shuttle and propelling the redox kinetics. Our devised PECVD route might pave a new route toward the facial and economic design of hetero-phased multi-functional hosts for high-performance Li-S systems.
URI
Go to Link
DOI
10.1016/j.nanoen.2018.09.002
ISSN
2211-2855
Appears in Collections:
MSE_Journal Papers
Files in This Item:
1-s2.0-S2211285518306396-main.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU