BROWSE

Related Researcher

Author's Photo

Jeong, Hoon Eui
Multiscale Biomimetics & Manufacturing Lab
Research Interests
  • Biomimetics

ITEM VIEW & DOWNLOAD

Woven Kevlar Fiber/Polydimethylsiloxane/Reduced Graphene Oxide Composite-Based Personal Thermal Management with Freestanding Cu-Ni Core-Shell Nanowires

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Woven Kevlar Fiber/Polydimethylsiloxane/Reduced Graphene Oxide Composite-Based Personal Thermal Management with Freestanding Cu-Ni Core-Shell Nanowires
Author
Hazarika, AnkitaDeka, Biplab K.Kim, DoYoungJeong, Hoon EuiPark, Young-BinPark, Hyung Wook
Issue Date
2018-11
Publisher
AMER CHEMICAL SOC
Citation
NANO LETTERS, v.18, no.11, pp.6731 - 6739
Abstract
Thermotherapy is a widespread technique that provides relief for muscle spasms and joint injuries. A great deal of energy is used to heat the surrounding environment, and heat emitted by the human body is wasted on our surroundings. Herein, a woven Kevlar fiber (WKF)-based personal thermal management device was fabricated by directly growing vertical copper-nickel (Cu-Ni) nanowires (NWs) on the WKF surface using a hydrothermal method. The treated WKF was combined with reduced graphene oxide (rGO) dispersed in polydimethylsiloxane (PDMS) to form composites using vacuum-assisted resin transfer molding (VARTM). This WKF-based personal thermal management system contained a conductive network of metallic NWs and rGO that promoted effective Joule heating and reflected back the infrared (IR) radiation emitted by the human body. It thus behaved as a type of thermal insulation. The Cu-Ni NWs were synthesized with a tunable Ni layer on Cu core NWs to enhance the oxidation resistance of the Cu NWs. The combined effect of the NW networks and rGO enabled a surface temperature of 70 °C to be attained on application of 1.5 V to the composites. The Cu3Ni1-WKF/PDMS provided 43% more thermal insulation and higher IR reflectance than bare WKF/PDMS. The absorbed impact energy and tensile strength was highest for the Cu1Ni3- and rGO-integrated WKF/PDMS samples. Those Cu-Ni NWs having higher Ni contents displayed better mechanical properties and those with higher Cu contents showed higher Joule heating performance and IR reflectivity at a given rGO loading. The composite shows sufficient breathability and very high durability. The high flexibility of the composites and their ability to generate sufficient heat during various human motions ensures their suitability for wearable applications.
URI
https://scholarworks.unist.ac.kr/handle/201301/25190
URL
https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b02408
DOI
10.1021/acs.nanolett.8b02408
ISSN
1530-6984
Appears in Collections:
MNE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU