File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김봉수

Kim, BongSoo
Polymer & Organic Semiconductor Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Preparation of Cu2ZnSnS4 thin films via electrochemical deposition and rapid thermal annealing

Author(s)
Lee, Kee DooSeo, Se-WonLee, Doh-KwonKim, HonggonJeong, Jeung-HyunKo, Min JaeKim, BongSooKim, Dong HwanKim, Jin Young
Issued Date
2013-11
DOI
10.1016/j.tsf.2013.02.051
URI
https://scholarworks.unist.ac.kr/handle/201301/24848
Fulltext
https://www.sciencedirect.com/science/article/pii/S0040609013003003?via%3Dihub
Citation
THIN SOLID FILMS, v.546, pp.294 - 298
Abstract
We fabricated metallic Cu-Zn-Sn (CZT) precursor thin films via electrochemical deposition from aqueous metal salt solution on Mo-coated soda-lime glass substrates, and the influence of the subsequent sulfurization condition on the morphology, composition and structure of the final Cu2ZnSnS4 (CZTS) thin films was investigated. A rapid thermal annealing equipment was used for a systematic control of the sulfurization process parameters. The as-deposited films are composed of binary metallic alloys, which can be converted to the highly crystalline CZTS phase after sulfurization at temperatures above 500 degrees C. The composition of the CZT film barely changes during the sulfurization, and a small amount of CuS-based secondary phases exists even at 550 degrees C. However, a quick post-annealing KCN treatment effectively and selectively removes the secondary phase, evidenced by the Raman spectroscopy and elemental.
Publisher
ELSEVIER SCIENCE SA
ISSN
0040-6090

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.