File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김봉수

Kim, BongSoo
Polymer & Organic Semiconductor Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

High-Performance Polymer Semiconductor-Based Nonvolatile Memory Cells with Nondestructive Read-Out

Author(s)
Sun, JiaKim, Min JeLee, MyeongjaeLee, DainKim, SeongchanPark, Jong-HyunLee, SungjooKim, BongSooCho, Jeong Ho
Issued Date
2017-11
DOI
10.1021/acs.jpcc.7b08798
URI
https://scholarworks.unist.ac.kr/handle/201301/24758
Fulltext
https://pubs.acs.org/doi/10.1021/acs.jpcc.7b08798
Citation
JOURNAL OF PHYSICAL CHEMISTRY C, v.121, no.43, pp.24352 - 24357
Abstract
In this manuscript, the fabrication of polymer nonvolatile memory cells based on one-transistor-one-transistor (1T1T) device geometries is reported. A spin coated diketopyrrolopyrrole (DPP)-based polymer semiconductor was used as the active channel layer for both the control transistor (CT) and memory transistor (MT); thermally deposited gold nanoparticles (Au NPs) were inserted between the tunneling and blocking gate dielectrics as a charge-trapping layer of the MT. In the 1T1T memory cell, the source electrode of the CT was connected to the gate electrode of the MT, while the drain electrode of the MT was connected to the gate electrode of the CT. The reading and writing processes of the memory cells operated separately, which yielded a nondestructive read-out capability. The fabricated 1T1T polymer memory cells exhibited excellent device performances with a large memory window of 16.1 V, a high programming erasing current ratio >10(3), a long retention of 10(3) s, a cyclic stability of 500 cycles, and a 2-bit data storage capability. The proposed device architecture provides a feasible method by which to achieve high-performance organic nonvolatile memory.
Publisher
AMER CHEMICAL SOC
ISSN
1932-7447
Keyword
FIELD-EFFECT TRANSISTORSTHIN-FILM TRANSISTORSCHARGE-TRAPPING LAYERFLOATING-GATE MEMORYORGANIC TRANSISTORGOLD NANOPARTICLESSOLAR-CELLSDEVICESVOLTAGEDIELECTRICS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.