A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose
Cited 9 times in
Cited 8 times in
- Title
- A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose
- Author
- Hwang, Sunyong; Kwon, Hyunah; Chhajed, Sameer; Byon, Ji Won; Baik, Jeong Min; Im, Jiseong; Oh, Sang Ho; Jang, Ho Won; Yoon, Seok Jin; Kim, Jong Kyu
- Keywords
- GLANCING ANGLE DEPOSITION; THIN-FILMS; REFRACTIVE-INDEX; OXIDE-NANOWIRE; SENSORS; NANOSTRUCTURES; SENSITIVITY; FABRICATION; HYDROGEN; DIOXIDE
- Issue Date
- 2013-01
- Publisher
- ROYAL SOC CHEMISTRY
- Citation
- ANALYST, v.138, no.2, pp.443 - 450
- Abstract
- We present high performance gas sensors based on an array of near single crystalline TiO2 nanohelices fabricated by rotating oblique angle deposition (OAD). The combination of large surface-to-volume ratio, extremely small size (<30 nm) comparable to the Debye length, a near single crystallinity of TiO2 nanohelices, together with the unique top-and-bottom electrode configuration hugely improves the H-2-sensing performance, including similar to 10 times higher response at 50 ppm, approximately a factor of 5 lower detection limit, and much faster response time than the conventional TiO2 thin film devices. Beyond such remarkable performance enhancement, the excellent compatibility of the OAD method compared with the conventional micro-fabrication technology opens a new avenue for monolithic integration of high-performance chemoresistive sensors to fabricate a simple, low cost, reliable, yet fully functional electronic nose and multi-functional smart chips for in situ environmental monitoring.
- URI
- ; Go to Link
- DOI
- 10.1039/c2an35932d
- ISSN
- 0003-2654
- Appears in Collections:
- MSE_Journal Papers
- Files in This Item:
-
000312074300009.pdf
Download
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.