File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Rationally designed spider web-like trivanadium heptaoxide nanowires on carbon cloth as a new class of pseudocapacitive electrode for symmetric supercapacitors with high energy density and ultra-long cyclic stability

Author(s)
Manikandan, RamuRaj, C. JustinRajesh, MurugesanKim, Byung ChulNagaraju, GoliLee, Won-gilYu, Kook Hyun
Issued Date
2018-06
DOI
10.1039/c8ta03011a
URI
https://scholarworks.unist.ac.kr/handle/201301/24403
Fulltext
http://pubs.rsc.org/en/Content/ArticleLanding/2018/TA/C8TA03011A#!divAbstract
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.6, no.24, pp.11390 - 11404
Abstract
The design and construction of one-dimensional (1D) nanostructures on flexible electrodes without the use of polymer binders/conductive additives has shown great potential for engineering improved electrochemical properties in supercapacitors. Herein, a facile in situ hydrothermal technique was adopted for the growth of trivanadium heptaoxide nanowires on carbon fiber cloth (V3O7/CFC). The resultant V3O7 sample displayed the self-accumulated growth of nanowires on CFC after 48 h with a spider web-like morphology. The specially designed binder-free V3O7/CFC was used to fabricate a symmetric supercapacitor in aqueous 1 M Na2SO4 electrolyte, which showed excellent electrochemical performance. Specifically, in the half-cell configuration, the device exhibited a maximum specific capacitance (C-sp) of 198 F g(-1) at 1 A g(-1) and in full-cell configuration, it showed a C-sp of 151 F g(-1) at the same current density with ultra-high cycling stability of approximate to 97% (after 100000 cycles). In addition, the performance of the symmetric device in 1 M 1-ethyl-3-methylimidazolium trifluoromethanesulfonate electrolyte was studied and it showed a wide potential window of 2 V with a maximum C-sp of 178 F g(-1). Furthermore, the device exhibited high energy and power densities of 24.7 W h kg(-1) (48.5 mW h cm(-2)) and 5.13 kW kg(-1) (10.05 W cm(-2)), representing as a viable electrode in ionic liquid electrolyte.
Publisher
ROYAL SOC CHEMISTRY
ISSN
2050-7488
Keyword
HIGH-PERFORMANCE SUPERCAPACITORSBINDER-FREE ELECTRODEREDOX ADDITIVE ELECTROLYTEVANADIUM-OXIDE NANOTUBESREDUCED GRAPHENE OXIDEELECTROCHEMICAL PERFORMANCEASYMMETRIC SUPERCAPACITORSNANOSTRUCTURES SYNTHESISIMPEDANCE SPECTROSCOPYHYDROTHERMAL SYNTHESIS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.