File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정일석

Chung, Il-Sug
Nano-Optoelectronics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Broadband MEMS-Tunable High-Index-Contrast Subwavelength Grating Long-Wavelength VCSEL

Author(s)
Chung, Il-SugIakovlev, VladmirSirbu, AlexeiMereuta, AlexandruCaliman, AndreiKapon, EliMork, Jesper
Issued Date
2010-09
DOI
10.1109/JQE.2010.2047494
URI
https://scholarworks.unist.ac.kr/handle/201301/23725
Fulltext
http://ieeexplore.ieee.org/document/5518530/
Citation
IEEE JOURNAL OF QUANTUM ELECTRONICS, v.46, no.9, pp.1245 - 1253
Abstract
A widely-tunable single-mode 1.3 mu m vertical-cavity surface-emitting laser structure incorporating a microelectromechanical system-tunable high-index-contrast subwavelength grating (HCG) mirror is suggested and numerically investigated. A linear tuning range of 100 nm and a wavelength tuning efficiency of 0.203 are predicted. The large tuning range and efficiency are attributed to the incorporation of the tuning air gap as part of the optical cavity and to the use of a short cavity structure. The short cavity length can be achieved by employing a HCG design of which the reflection mechanism does not rely on resonant coupling. The absence of resonance coupling leads to a 0.59 lambda-thick penetration depth of the HCG and enables to use a 0.25 lambda-thick tuning air gap underneath the HCG. This considerably reduces the effective cavity length, leading to larger tuning range and efficiency. The basic properties of this new structure are analyzed, and shown to be explained by analytical expressions that are derived in the paper. In this context, the penetration depth of the HCG is introduced and shown to be an important characteristic length scale. Throughout the tuning wavelength range, strong single mode operation was maintained and uniform output power is expected.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
ISSN
0018-9197

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.