File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection

Author(s)
Kang, Sarah M.Shin, YechulXie, Shang-Ping
Issued Date
2018-01
DOI
10.1038/s41612-017-0004-6
URI
https://scholarworks.unist.ac.kr/handle/201301/23675
Fulltext
https://www.nature.com/articles/s41612-017-0004-6
Citation
NPJ CLIMATE AND ATMOSPHERIC SCIENCE, v.1, pp.2
Abstract
Intense tropical rainfall occurs in a narrow belt near the equator, called the inter-tropical convergence zone (ITCZ). In the past decade, the atmospheric energy budget has been used to explain changes in the zonal-mean ITCZ position. The energetics framework provides a mechanism for extratropics-to-tropics teleconnections, which have been postulated from paleoclimate records. In atmosphere models coupled with a motionless slab ocean, the ITCZ shifts toward the warmed hemisphere in order for the Hadley circulation to transport energy toward the colder hemisphere. However, recent studies using fully coupled models show that tropical rainfall can be rather insensitive to extratropical forcing when ocean dynamics is included. Here, we explore the effect of meridional Ekman heat advection while neglecting the upwelling effect on the ITCZ response to prescribed extratropical thermal forcing. The tropical component of Ekman advection is a negative feedback that partially compensates the prescribed forcing, whereas the extratropical component is a positive feedback that amplifies the prescribed forcing. Overall, the tropical negative feedback dominates over the extratropical positive feedback. Thus, including Ekman advection reduces the need for atmospheric energy transport, dampening the ITCZ response. We propose to build a hierarchy of ocean models to systematically explore the full dynamical response of the coupled climate system.
Publisher
NATURE PUBLISHING GROUP
ISSN
2397-3722

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.