File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송창근

Song, Chang-Keun
Air Quality Impact Assessment Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea

Author(s)
Kim, Hyun CheolKim, SoontaeKim, Byeong-UkJin, Chun-SilHong, SongyouPark, RokjinSon, Seok-WooBae, ChanghanBae, MinAhSong, Chang-KeunStein, Ariel
Issued Date
2017-07
DOI
10.1038/s41598-017-05092-8
URI
https://scholarworks.unist.ac.kr/handle/201301/22423
Fulltext
https://www.nature.com/articles/s41598-017-05092-8
Citation
SCIENTIFIC REPORTS, v.7, no.1, pp.4710
Abstract
Recent changes of surface particulate matter (PM) concentration in the Seoul Metropolitan Area (SMA), South Korea, are puzzling. The long-term trend of surface PM concentration in the SMA declined in the 2000s, but since 2012 its concentrations have tended to incline, which is coincident with frequent severe hazes in South Korea. This increase puts the Korean government's emission reduction efforts in jeopardy. This study reports that interannual variation of surface PM concentration in South Korea is closely linked with the interannual variations of wind speed. A 12-year (2004-2015) regional air quality simulation was conducted over East Asia (27-km) and over South Korea (9-km) to assess the impact of meteorology under constant anthropogenic emissions. Simulated PM concentrations show a strong negative correlation (i.e. R = -0.86) with regional wind speed, implying that reduced regional ventilation is likely associated with more stagnant conditions that cause severe pollutant episodes in South Korea. We conclude that the current PM concentration trend in South Korea is a combination of long-term decline by emission control efforts and short-term fluctuation of regional wind speed interannual variability. When the meteorology-driven variations are removed, PM concentrations in South Korea have declined continuously even after 2012.
Publisher
NATURE PUBLISHING GROUP
ISSN
2045-2322
Keyword
AIR-POLLUTION EPISODESSIBERIAN FOREST-FIRESASIAN DUST EVENTSEAST-ASIAMETEOROLOGICAL PARAMETERSNORTHERN-HEMISPHERESULFATE AEROSOLSGREENHOUSE GASESCLIMATE-CHANGESOUTH-KOREA

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.