File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이종훈

Lee, Zonghoon
Atomic-Scale Electron Microscopy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Superaerophobic graphene nano-hills for direct hydrazine fuel cells

Author(s)
Akbar, KamranKim, Jung HwaLee, ZonghoonKim, MinsooYi, YeonjinChun, Seung-Hyun
Issued Date
2017-05
DOI
10.1038/am.2017.55
URI
https://scholarworks.unist.ac.kr/handle/201301/22213
Fulltext
https://www.nature.com/am/journal/v9/n5/full/am201755a.html
Citation
NPG ASIA MATERIALS, v.9, pp.e378
Abstract
Hydrazine fuel-cell technology holds great promise for clean energy, not only because of the greater energy density of hydrazine compared to hydrogen but also due to its safer handling owing to its liquid state. However, current technologies involve the use of precious metals (such as platinum) for hydrazine oxidation, which hinders the further application of hydrazine fuel-cell technologies. In addition, little attention has been devoted to the management of gas, which tends to become stuck on the surface of the electrode, producing overall poor electrode efficiencies. In this study, we utilized a nano-hill morphology of vertical graphene, which efficiently resolves the issue of the accumulation of gas bubbles on the electrode surface by providing a nano-rough-edged surface that acts as a superaerophobic electrode. The growth of the vertical graphene nano-hills was achieved and optimized by a scalable plasma-enhanced chemical vapor deposition method. The resulting metal-free graphene-based electrode showed the lowest onset potential (-0.42 V vs saturated calomel electrode) and the highest current density of all the carbon-based materials reported previously for hydrazine oxidation.
Publisher
NATURE PUBLISHING GROUP
ISSN
1884-4049
Keyword
NITROGEN-DOPED GRAPHENEOXYGEN REDUCTIONHYDROGEN EVOLUTIONLARGE-SCALEOXIDATIONCATALYSTELECTROCATALYSTPERFORMANCEELECTRODESNANOSHEETS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.