File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Pentagonal Bipyramid FeII Complexes: Robust Ising-Spin Units towards Heteropolynuclear Nanomagnets

Author(s)
Bar, Arun KumarGogoi, NayanmoniPichon, CelineGoli, V. M. L. Durga PrasadThlijeni, MehrezDuhayon, CarineSuaud, NicolasGuihery, NathalieBarra, Anne-LaureRamasesha, S.Sutter, Jean-Pascal
Issued Date
2017-03
DOI
10.1002/chem.201605549
URI
https://scholarworks.unist.ac.kr/handle/201301/21916
Fulltext
http://onlinelibrary.wiley.com/doi/10.1002/chem.201605549/abstract
Citation
CHEMISTRY-A EUROPEAN JOURNAL, v.23, no.18, pp.4380 - 4396
Abstract
Pentagonal bipyramid FeII complexes have been investigated to evaluate their potential as Ising-spin building units for the preparation of heteropolynuclear complexes that are likely to behave as single-molecule magnets (SMMs). The considered monometallic complexes were prepared from the association of a divalent metal ion with pentadentate ligands that have a 2,6-diacetylpyridine bis(hydrazone) core (H2LN3O2R). Their magnetic anisotropy was established by magnetometry to reveal their zero-field splitting (ZFS) parameter D, which ranged between -4 and -13cm-1 and was found to be modulated by the apical ligands (ROH versus Cl). The alteration of the D value by N-bound axial CN ligands, upon association with cyanometallates, was also assessed for heptacoordinated FeII as well as for related NiII and CoII derivatives. In all cases, N-coordinated cyanide ligands led to large magnetic anisotropy (i.e., -8 to -18cm-1 for Fe and Ni, +33cm-1 for Co). Ab initio calculations were performed on three FeII complexes, which enabled one to rationalize the role of the ligand on the nature and magnitude of the magnetic anisotropy. Starting from the pre-existing heptacoordinated complexes, a series of pentanuclear compounds were obtained by reactions with paramagnetic [W(CN)8]3-. Magnetic studies revealed the occurrence of ferromagnetic interactions between the spin carriers in all the heterometallic systems. Field-induced slow magnetic relaxation was observed for mononuclear FeII complexes (Ueff/kB up to 53K (37cm-1), τ0=5×10-9s), and SMM behavior was evidenced for a heteronuclear [Fe3W2] derivative (Ueff/kB=35K and τ0=4.6 10-10s), which confirmed that the parent complexes were robust Ising-type building units. High-field EPR spectroscopic investigation of the ZFS parameters for a Ni derivative is also reported.
Publisher
WILEY-V C H VERLAG GMBH
ISSN
0947-6539
Keyword (Author)
ab initio calculationsbipyramid pentagonalcoordination chemistryironmagnetic properties
Keyword
SINGLE-MOLECULE MAGNETSTRANSITION-METAL-COMPLEXESGAUSSIAN-BASIS SETS8-COORDINATE COBALT(II) COMPLEXJAHN-TELLER DISTORTIONANO BASIS-SETSCO(II) COMPLEXESCHAIN MAGNETSPERTURBATION-THEORYEPR SPECTROSCOPY

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.