File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

Author(s)
Wang, Zhu-JunDong, JichenCui, YiEres, GyulaTimpe, OlafFu, QiangDing, FengSchloegl, R.Willinger, Marc-Georg
Issued Date
2016-10
DOI
10.1038/ncomms13256
URI
https://scholarworks.unist.ac.kr/handle/201301/21522
Fulltext
http://www.nature.com/articles/ncomms13256
Citation
NATURE COMMUNICATIONS, v.7, pp.13256
Abstract
In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene-graphene and graphene-substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp(2) carbon nanostructures in between graphene and graphite.
Publisher
NATURE PUBLISHING GROUP
ISSN
2041-1723

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.