File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이자일

Lee, Ja Yil
Biochemistry and Molecular Biophysics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

ATP hydrolysis Promotes Duplex DNA Release by the RecA Presynaptic Complex

Author(s)
Lee, Ja YilQi, ZhiGreene, Eric C.
Issued Date
2016-10
DOI
10.1074/jbc.M116.740563
URI
https://scholarworks.unist.ac.kr/handle/201301/20492
Fulltext
http://www.jbc.org/content/291/42/22218.abstract
Citation
JOURNAL OF BIOLOGICAL CHEMISTRY, v.291, no.42, pp.22218 - 22230
Abstract
Homologous recombination is an important DNA repair pathway that plays key roles in maintaining genome stability. Escherichia coli RecA is an ATP-dependent DNA binding protein that catalyzes the DNA strand exchange reactions in homologous recombination. RecA assembles into long helical filaments on single-stranded DNA and these presynaptic complexes are responsible for locating and pairing with a homologous duplex DNA. Recent single molecule studies have provided new insights into RecA behavior, but the potential influence of ATP in the reactions remains poorly understood. Here we examine how ATP influences the ability of the RecA presynaptic complex to interact with homologous dsDNA. We demonstrate that over short time regimes RecA presynaptic complexes sample heterologous dsDNA similarly in the presence of either ATP or ATPγS, suggesting that initial interactions do not depend on ATP hydrolysis. In addition, RecA stabilizes pairing intermediates in 3-base steps, and stepping energetics is seemingly unaltered in the presence of ATP. However the overall dissociation rate of these paired intermediates with ATP is ~4-fold higher than with ATPγS. These experiments suggest that ATP plays an unanticipated role in promoting the turnover of captured duplex DNA intermediates as RecA attempts to align homologous sequences during the early stages of recombination.
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
ISSN
0021-9258

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.