File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김은희

Kim, Eunhee
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling

Author(s)
Kang, Hee-BumFan, JunLin, RuitingElf, ShannonJi, QuanjiangZhao, LiangJin, LingtaoSeo, Jae HoShan, ChangliangArbiser, Jack L.Cohen, CynthiaBrat, DanielMiziorko, Henry M.Kim, EunheeAbdel-Wahab, OmarMerghoub, TahaFroehling, StefanScholl, ClaudiaTamayo, PabloBarbie, David A.Zhou, LuPollack, Brian P.Fisher, KevinKudchadkar, Ragini R.Lawson, David H.Sica, GabrielRossi, MichaelLonial, SagarKhoury, Hanna J.Khuri, Fadlo R.Lee, Benjamin H.Boggon, Titus J.He, ChuanKang, SuminChen, Jing
Issued Date
2015-08
DOI
10.1016/j.molcel.2015.05.037
URI
https://scholarworks.unist.ac.kr/handle/201301/20162
Fulltext
http://www.sciencedirect.com/science/article/pii/S1097276515004384
Citation
MOLECULAR CELL, v.59, no.3, pp.345 - 358
Abstract
Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal'' interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires'' metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development.
Publisher
CELL PRESS
ISSN
1097-2765
Keyword
HAIRY-CELL LEUKEMIAKETONE-BODY METABOLISMTYROSINE PHOSPHORYLATIONLYSINE ACETYLATIONTUMOR-GROWTHMUTATIONSCANCERDEHYDROGENASEMELANOMAKINASE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.