File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

서관용

Seo, Kwanyong
The SEO Group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 14479 -
dc.citation.number 30 -
dc.citation.startPage 14473 -
dc.citation.title NANOSCALE -
dc.citation.volume 8 -
dc.contributor.author Lee, Kangmin -
dc.contributor.author Hwang, Inchan -
dc.contributor.author Kim, Namwoo -
dc.contributor.author Choi, Deokjae -
dc.contributor.author Um, Han-Don -
dc.contributor.author Kim, Seungchul -
dc.contributor.author Seo, Kwanyong -
dc.date.accessioned 2023-12-21T23:19:50Z -
dc.date.available 2023-12-21T23:19:50Z -
dc.date.created 2016-07-13 -
dc.date.issued 2016-08 -
dc.description.abstract We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm2 exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm−2 because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the proposed hybrid structure to become a foundational technology for the development of highly efficient radial junction solar cells. -
dc.identifier.bibliographicCitation NANOSCALE, v.8, no.30, pp.14473 - 14479 -
dc.identifier.doi 10.1039/c6nr04611h -
dc.identifier.issn 2040-3364 -
dc.identifier.scopusid 2-s2.0-84979998503 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/20025 -
dc.identifier.url http://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr04611h#!divAbstract -
dc.identifier.wosid 000381417800017 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus RECOMBINATION -
dc.subject.keywordPlus FABRICATION -
dc.subject.keywordPlus ABSORPTION -
dc.subject.keywordPlus TEXTURES -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus PHOTOVOLTAIC APPLICATIONS -
dc.subject.keywordPlus SI -
dc.subject.keywordPlus ARRAYS -
dc.subject.keywordPlus NANOWIRES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.