File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

백종범

Baek, Jong-Beom
Center for Dimension-Controllable Organic Frameworks
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Graphene Nanoplatelets with Selectively Functionalized Edges as Electrode Material for Electrochemical Energy Storage

Author(s)
Bhattacharjya, DhrubajyotiJeon, In-YupPark, Hyean-YeolPanja, TandraBaek, Jong-BeomYu, Jong-Sung
Issued Date
2015-05
DOI
10.1021/acs.langmuir.5b00195
URI
https://scholarworks.unist.ac.kr/handle/201301/17385
Fulltext
http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.5b00195
Citation
LANGMUIR, v.31, no.20, pp.5676 - 5683
Abstract
In recent years, graphene-based materials have been in the forefront as electrode material for electrochemical energy generation and storage. Despite this prevalent interest, synthesis procedures have not attained three important efficiency requirements, that is, cost, energy, and eco-friendliness. In this regard, in the present work, graphene nanoplatelets with selectively functionalized edges (XGnPs) are prepared through a simple, eco-friendly and efficient method, which involves ball milling of graphite in the presence of hydrogen (H-2), bromine (Br-2), and iodine (I-2). The resultant HGnP, BrGnP, and IGnP reveal significant exfoliation of graphite layers, as evidenced by high BET surface area of 414, 595, and 772 m(2) g(-1), respectively, in addition to incorporation of H, Br, and I along with other oxygen-containing functional groups at the graphitic edges. The BrGnP and IGnP are also found to contain 4.12 and 2.20 at % of Br and I, respectively in the graphene framework. When tested as supercapacitor electrode, all XGnPs show excellent electrochemical performance in terms of specific capacitance and durability at high current density and long-term operation. Among XGnPs, IGnP delivers superior performance of 172 F g(-1) at 1 A g(-1) compared with 150 F g(-1) for BrGnP and 75 F g(-1) for HGnP because the large surface area and high surface functionality in the IGnP give rise to the outstanding capacitive performance. Moreover, all XGnPs show excellent retention of capacitance at high current density of 10 A g(-1) and for long-term operation up to 1000 charge-discharge cycles
Publisher
AMER CHEMICAL SOC
ISSN
0743-7463
Keyword
OXYGEN REDUCTION REACTIONLITHIUM-ION BATTERIESMESOPOROUS CARBONDOPED GRAPHENEPOROUS CARBONANODE MATERIALSLAYER GRAPHENESINGLE-LAYERSUPERCAPACITOROXIDE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.