BROWSE

Related Researcher

Author's Photo

Lee, Jongwon
Nanostructured Photonic Devices Lab (NPDL)
Research Interests
  • Plasmonics, metasurfaces, metamaterials, surface-enhanced infrared absorption spectroscopy, orbital angular momentum generation

ITEM VIEW & DOWNLOAD

Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions

Cited 38 times inthomson ciCited 28 times inthomson ci
Title
Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions
Author
Lee, JongwonTymchenko, MykhailoArgyropolous, ChristosChen, Pai-YenLu, FengDemmerle, FredericBoehm, GerhardAmann, Markus-ChristianAlu, AndreaBelkin, Mikhail A.
Keywords
OPTIMIZED 2ND-HARMONIC GENERATION; QUANTUM CASCADE LASERS; SPLIT-RING RESONATORS; NEGATIVE REFRACTION; WELLS; METAMATERIALS; GAAS
Issue Date
2014-07
Publisher
NATURE PUBLISHING GROUP
Citation
NATURE, v.511, no.7507, pp.65 - 69
Abstract
Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems-but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers(1-7). In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties(8-11). Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 x 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far(12-15). The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up-and down-conversions, phase conjugation and all-optical control and tunability over a surface.
URI
Go to Link
DOI
10.1038/nature13455
ISSN
0028-0836
Appears in Collections:
EE_Journal Papers
Files in This Item:
Lee_et_al_Nature_2014.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU