Turbulent boundary layers over sparsely-spaced rod-roughened walls
Cited 0 times in
Cited 0 times in
- Title
- Turbulent boundary layers over sparsely-spaced rod-roughened walls
- Author
- Nadeem, Muhammad; Lee, Jae Hwa; Lee, Jin; Sung, Hyung Jin
- Issue Date
- 2015-12
- Publisher
- ELSEVIER SCIENCE INC
- Citation
- INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, v.56, pp.16 - 27
- Abstract
- Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over sparsely-spaced two-dimensional (2D) rod-roughened walls were performed. The rod elements were periodically arranged along the streamwise direction with pitches of p(x)/k = 8, 16, 32, 64 and 128, where p(x) is the streamwise spacing of the rods, and k is the roughness height. The Reynolds number based on the momentum thickness was varied from Re-0 = 300-1400, and the height of the roughness element was k = 1.5 theta(in), where theta(in), is the momentum thickness at the inlet. The characteristics of the TBLs, such as the friction velocity, mean velocity, and Reynolds stresses over the rod-roughened walls, were examined by varying the spacing of the roughness features (8 <= p(x)/k <= 128). The outer-layer similarity between the rough and smooth walls was established for the sparsely-distributed rough walls (p(x)/k >= 32) based on the profiles of the Reynolds stresses, whereas those are not for p(x)/k = 8 and 16. Inspection of the interaction between outer-layer large-scale motions and near-wall small-scale motions using two-point amplitude modulation (AM) covariance showed that modulation effect of large-scale motions on near-wall small-scale motions was strongly disturbed over the rough wall for p(x)/k = 8 and 16. For p(x)/k >= 32, the flow that passed through the upstream roughness element transitioned to a smooth wall flow between the consecutive rods. The strong influence of the surface roughness in the outer layer for p(x)/k = 8 and 16 was attributed to large-scale erupting motions by the surface roughness, creating both upward shift of the near-wall turbulent energy and active energy production in the outer layer with little influence on the near-wall region. ess, creating both upward shift of the near-wall turbulent energy and active energy production in the outer layer with little influence on the near-wall region.
- URI
- https://scholarworks.unist.ac.kr/handle/201301/16425
- URL
- http://www.sciencedirect.com/science/article/pii/S0142727X15000715
- DOI
- 10.1016/j.ijheatfluidflow.2015.06.006
- ISSN
- 0142-727X
- Appears in Collections:
- MEN_Journal Papers
- Files in This Item:
- There are no files associated with this item.
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.