BROWSE

Related Researcher

Author's Photo

Lee, Jae Hwa
Flow Physics and Control Lab
Research Interests
  • Turbulent Flow Physics and Control
  • Incompressible and Compressible Flows
  • Fluid-Structure Interaction
  • Multi-Phase Flow with Heat Transfer

ITEM VIEW & DOWNLOAD

Turbulent boundary layers over sparsely-spaced rod-roughened walls

DC Field Value Language
dc.contributor.author Nadeem, Muhammad ko
dc.contributor.author Lee, Jae Hwa ko
dc.contributor.author Lee, Jin ko
dc.contributor.author Sung, Hyung Jin ko
dc.date.available 2015-09-01T06:01:50Z -
dc.date.created 2015-07-08 ko
dc.date.issued 2015-12 ko
dc.identifier.citation INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, v.56, pp.16 - 27 ko
dc.identifier.issn 0142-727X ko
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/16425 -
dc.description.abstract Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over sparsely-spaced two-dimensional (2D) rod-roughened walls were performed. The rod elements were periodically arranged along the streamwise direction with pitches of p(x)/k = 8, 16, 32, 64 and 128, where p(x) is the streamwise spacing of the rods, and k is the roughness height. The Reynolds number based on the momentum thickness was varied from Re-0 = 300-1400, and the height of the roughness element was k = 1.5 theta(in), where theta(in), is the momentum thickness at the inlet. The characteristics of the TBLs, such as the friction velocity, mean velocity, and Reynolds stresses over the rod-roughened walls, were examined by varying the spacing of the roughness features (8 <= p(x)/k <= 128). The outer-layer similarity between the rough and smooth walls was established for the sparsely-distributed rough walls (p(x)/k >= 32) based on the profiles of the Reynolds stresses, whereas those are not for p(x)/k = 8 and 16. Inspection of the interaction between outer-layer large-scale motions and near-wall small-scale motions using two-point amplitude modulation (AM) covariance showed that modulation effect of large-scale motions on near-wall small-scale motions was strongly disturbed over the rough wall for p(x)/k = 8 and 16. For p(x)/k >= 32, the flow that passed through the upstream roughness element transitioned to a smooth wall flow between the consecutive rods. The strong influence of the surface roughness in the outer layer for p(x)/k = 8 and 16 was attributed to large-scale erupting motions by the surface roughness, creating both upward shift of the near-wall turbulent energy and active energy production in the outer layer with little influence on the near-wall region. ess, creating both upward shift of the near-wall turbulent energy and active energy production in the outer layer with little influence on the near-wall region. ko
dc.description.statementofresponsibility close -
dc.language 영어 ko
dc.publisher ELSEVIER SCIENCE INC ko
dc.title Turbulent boundary layers over sparsely-spaced rod-roughened walls ko
dc.type ARTICLE ko
dc.identifier.scopusid 2-s2.0-84937573051 ko
dc.identifier.wosid 000366961900002 ko
dc.type.rims ART ko
dc.description.wostc 0 *
dc.description.scopustc 0 *
dc.date.tcdate 2016-01-21 *
dc.date.scptcdate 2015-11-04 *
dc.date.scptcdate 2015-11-04 *
dc.identifier.doi 10.1016/j.ijheatfluidflow.2015.06.006 ko
dc.identifier.url http://www.sciencedirect.com/science/article/pii/S0142727X15000715 ko
Appears in Collections:
MEN_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show simple item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU