BROWSE

Related Researcher

Author's Photo

Min, Seung Kyu
Theoretical/Computational Chemistry Group for Excited State Phenomena
Research Interests
  • Excited state dynamics, photosynthesis, solarcell, light-driven molecular machine

ITEM VIEW & DOWNLOAD

CO2 Capturing Mechanism in Aqueous Ammonia: NH3-Driven Decomposition-Recombination Pathway

Cited 21 times inthomson ciCited 22 times inthomson ci
Title
CO2 Capturing Mechanism in Aqueous Ammonia: NH3-Driven Decomposition-Recombination Pathway
Author
Kim, Dong YoungLee, Han MyoungMin, Seung KyuCho, YeonchooHwang, In-ChulHan, KunwooKim, Je YoungKim, Kwang S.
Issue Date
2011-04
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.2, no.7, pp.689 - 694
Abstract
Capturing CO2 by aqueous ammonia has recently received much attention due to its advantages over other state-of-the-art CO2-capture technology. Thus, understanding this CO2-capturing mechanism, which has been causing controversy, is crucial for further development toward advanced CO2 capture. The CO2 conversion mechanism in aqueous ammonia is investigated using ab initio calculations and kinetic simulations. We show full details of all reaction pathways for the NH3-driven conversion mechanism of CO2 with the pronounced effect of microsolvation. Ammonia performs multiple roles as reactant, catalyst, base, and product controller. Both carbamic and carbonic acids are formed by the ammonia-driven trimolecular mechanism. Ammonia in microsolvation makes the formation of carbamic acid kinetically preferred over carbonic acid. As the concentration of CO2 increases, the dominant product becomes carbonic acid. The conversion from carbamic acid into carbonic acid occurs through the decomposition recombination pathway. This understanding would be exploited for the optimal CO2 capture technology.
URI
https://scholarworks.unist.ac.kr/handle/201301/16419
URL
http://pubs.acs.org/doi/abs/10.1021/jz200095j
DOI
10.1021/jz200095j
ISSN
1948-7185
Appears in Collections:
CHM_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU