BROWSE

Related Researcher

Author's Photo

Kim, Kwanpyo
Experimental Nanoscale Physics Lab
Research Interests
  • Two-dimensional (2D) materials, graphene, NEMS, electron microscopy

ITEM VIEW & DOWNLOAD

Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework
Author
To, John W. F.Chen, ZhengYao, HongbinHe, JiajunKim, KwanpyoChou, Ho-HsiuPan, LijiaWilcox, JenniferCui, YiBao, Zhenan
Issue Date
2015-05
Publisher
AMER CHEMICAL SOC
Citation
ACS CENTRAL SCIENCE, v.1, no.2, pp.68 - 76
Abstract
Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g-1), large pore volume (2.26 cm-3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.
URI
https://scholarworks.unist.ac.kr/handle/201301/13423
URL
http://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00149
DOI
10.1021/acscentsci.5b00149
ISSN
2374-7943
Appears in Collections:
PHY_Journal Papers
Files in This Item:
acscentsci%2E5b00149.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU