File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김관표

Kim, Kwanpyo
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

Author(s)
To, John W. F.Chen, ZhengYao, HongbinHe, JiajunKim, KwanpyoChou, Ho-HsiuPan, LijiaWilcox, JenniferCui, YiBao, Zhenan
Issued Date
2015-05
DOI
10.1021/acscentsci.5b00149
URI
https://scholarworks.unist.ac.kr/handle/201301/13423
Fulltext
http://pubs.acs.org/doi/abs/10.1021/acscentsci.5b00149
Citation
ACS CENTRAL SCIENCE, v.1, no.2, pp.68 - 76
Abstract
Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g-1), large pore volume (2.26 cm-3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.
Publisher
AMER CHEMICAL SOC
ISSN
2374-7943
Keyword
YIELD ACTIVATED CARBONHIGH-PERFORMANCEGRAPHENEENERGYBATTERIESGASIFICATIONCAPACITANCEFILMS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.