BROWSE

Related Researcher

Author's Photo

Lee, Jae Sung
Eco-friendly Catalysis and Energy Lab
Research Interests
  • Photocatalytic water splitting, artificial photosynthesis, fuel cells, heterogeneous catalysis

ITEM VIEW & DOWNLOAD

ROLE OF ALKALI PROMOTERS IN K/MOS2 CATALYSTS FOR CO-H2 REACTIONS

Cited 43 times inthomson ciCited 45 times inthomson ci
Title
ROLE OF ALKALI PROMOTERS IN K/MOS2 CATALYSTS FOR CO-H2 REACTIONS
Other Titles
ROLE OF ALKALI PROMOTERS IN K/MOS2 CATALYSTS FOR CO-H2 REACTIONS
Author
Lee, Jae SungKIM, SoonhoLEE, Kyung HeeNAM, In-SikCHUNG, Jong ShikKIM, Young GulWOO, Hee Chul
Keywords
ALKALI PROMOTERS; CARBON MONOXIDE; HYDROGEN; MOLYBDENUM SULFIDE; POTASSIUM
Issue Date
1994-03
Publisher
ELSEVIER SCIENCE BV
Citation
APPLIED CATALYSIS A-GENERAL, v.110, no.1, pp.11 - 25
Abstract
The effect of alkali promoters on selectivity of CO-H-2 reactions was studied for potassium-promoted MoS2 employing different potassium salts and pretreatment conditions (oxidized vs. fresh samples). Promoters assisted either chain growth of hydrocarbon products or alcohol formation. A good correlation was observed between pK(a) of the conjugate acid of each promoter and its space-time yield of alcohol formation. Alcohol selective promoters such as K2CO3, KOH and K2S readily removed their counter anions under the reaction conditions to form a new potassium complex and spread themselves uniformly over MoS2. This complex appears to serve as an active site which adsorbs carbon monoxide molecularly and, at the same time, cover the majority of the MoS2 surface which is responsible for dissociative carbon monoxide adsorption and hydrogenation. Promoters for chain growth such as K2SO4 and KCl maintained their initial chemical states throughout the reactions and showed highly nonuniform lateral distributions. Thus, the promoters have a limited coverage over MoS2, yet modify the electronic state Of MoS2 which interacts directly with carbon monoxide. Exposure of K2CO3- or KOH-promoted MoS2 to atmosphere for an extended period oxidized the catalyst and caused segregation of potassium into the bulk Of MoS2. Thus, the MoSt Of MoS2 surface is now exposed, yet modified by potassium located in the subsurface region Of MoS2. These modified catalysts promoted hydrocarbon chain growth without forming alcohols. The results demonstrate that the distribution of promoter is one of the primary factors determining its role in catalytic CO-H-2 reactions
URI
Go to Link
DOI
10.1016/0926-860X(94)80101-0
ISSN
0926-860X
Appears in Collections:
ECHE_Journal Papers
Files in This Item:
1-s2.0-0926860X94801010-main.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU