BROWSE

Related Researcher

Author's Photo

Choi, Nam-Soon
Energy Materials Lab
Research Interests
  • Rechargeable lithium battery, electrolytes for next generation Mg and Na battery

ITEM VIEW & DOWNLOAD

Effect of Lithium Bis(oxalato) borate Additive on Electrochemical Performance of Li1.17Ni0.17Mn0.5Co0.17O2 Cathodes for Lithium-Ion Batteries

Cited 6 times inthomson ciCited 7 times inthomson ci
Title
Effect of Lithium Bis(oxalato) borate Additive on Electrochemical Performance of Li1.17Ni0.17Mn0.5Co0.17O2 Cathodes for Lithium-Ion Batteries
Author
Lee, Sung JunHan, Jung-GuPark, InbokSong, JuhyeCho, JaephilKim, Jeom-SooChoi, Nam-Soon
Issue Date
2014-09
Publisher
ELECTROCHEMICAL SOC INC
Citation
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, v.161, no.14, pp.A2012 - A2019
Abstract
Lithium bis(oxalato) borate (LiBOB) is utilized as an oxidative additive to prevent the unwanted electrolyte decomposition on the surface of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes. Our investigation reveals that the LiBOB additive forms a protective layer on the cathode surface and effectively mitigates severe oxidative decomposition of LiPF6-based electrolytes. Noticeable improvements in the cycling stability and rate capability of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes are achieved in the LiBOB-added electrolyte. After 100 cycles at 60 degrees C, the discharge capacity retention of the Li1.17Ni0.17Mn0.5Co0.17O2 cathode was 28.6% in the reference electrolyte, whereas the LiBOB-containing electrolyte maintained 77.6% of its initial discharge capacity. Moreover, the Li1.17Ni0.17Mn0.5Co0.17O2 cathode with LiBOB additive delivered a superior discharge capacity of 115 mAh g(-1) at a high rate of 2 C compared with the reference electrolyte. The OCV of a full cell charged in the reference electrolyte drastically decreased from 4.22 V to 3.52 V during storage at 60 degrees C, whereas a full cell charged in the LiBOB-added electrolyte exhibited superior retention of the OCV.
URI
https://scholarworks.unist.ac.kr/handle/201301/10089
DOI
10.1149/2.0211414jes
ISSN
0013-4651
Appears in Collections:
ECHE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU