BROWSE

Related Researcher

Author's Photo

Bhak, Jong
KOrean GenomIcs Center(KOGIC)
Research Interests
  • Geromics, genomics, bioinformatics, protein Engineering, OMICS

ITEM VIEW & DOWNLOAD

Gene Expression Pattern in Transmitochondrial Cytoplasmic Hybrid Cells Harboring Type 2 Diabetes-Associated Mitochondrial DNA Haplogroups

Cited 15 times inthomson ciCited 18 times inthomson ci
Title
Gene Expression Pattern in Transmitochondrial Cytoplasmic Hybrid Cells Harboring Type 2 Diabetes-Associated Mitochondrial DNA Haplogroups
Author
Hwang, SeungwooKwak, Soo HeonBhak, Jong HwaKang, Hae SunLee, You RiKoo, Bo KyungPark, Kyong SooLee, Hong KyuCho, Young Min
Keywords
SET ENRICHMENT ANALYSIS; KOREAN POPULATION; MTDNA; MELLITUS; POLYMORPHISMS; RESISTANCE; SELECTION; PROFILES; MUTATION; HUMANS
Issue Date
2011-07
Publisher
PUBLIC LIBRARY SCIENCE
Citation
PLOS ONE, v.6, no.7, pp. -
Abstract
Decreased mitochondrial function plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Recently, it was reported that mitochondrial DNA (mtDNA) haplogroups confer genetic susceptibility to T2DM in Koreans and Japanese. Particularly, mtDNA haplogroup N9a is associated with a decreased risk of T2DM, whereas haplogroups D5 and F are associated with an increased risk. To examine functional consequences of these haplogroups without being confounded by the heterogeneous nuclear genomic backgrounds of different subjects, we constructed transmitochondrial cytoplasmic hybrid (cybrid) cells harboring each of the three haplogroups (N9a, D5, and F) in a background of a shared nuclear genome. We compared the functional consequences of the three haplogroups using cell-based assays and gene expression microarrays. Cell-based assays did not detect differences in mitochondrial functions among the haplogroups in terms of ATP generation, reactive oxygen species production, mitochondrial membrane potential, and cellular dehydrogenase activity. However, differential expression and clustering analyses of microarray data revealed that the three haplogroups exhibit a distinctive nuclear gene expression pattern that correlates with their susceptibility to T2DM. Pathway analysis of microarray data identified several differentially regulated metabolic pathways. Notably, compared to the T2DM-resistant haplogroup N9a, the T2DM-susceptible haplogroup F showed down-regulation of oxidative phosphorylation and up-regulation of glycolysis. These results suggest that variations in mtDNA can affect the expression of nuclear genes regulating mitochondrial functions or cellular energetics. Given that impaired mitochondrial function caused by T2DM-associated mtDNA haplogroups is compensated by the nuclear genome, we speculate that defective nuclear compensation, under certain circumstances, might lead to the development of T2DM.
URI
Go to Link
DOI
10.1371/journal.pone.0022116
ISSN
1932-6203
Appears in Collections:
BME_Journal Papers
Files in This Item:
2-s2.0-79960218332.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU