A stochastic model for the optimal batch size in multi-step operations with process and product variability
Cited 1 times in
Cited 0 times in
- Title
- A stochastic model for the optimal batch size in multi-step operations with process and product variability
- Author
- Shin, D.; Park, J.; Kim, Namhun; Wysk, R. A.
- Issue Date
- 2009-01
- Publisher
- TAYLOR & FRANCIS LTD
- Citation
- INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, v.47, no.14, pp.3919 - 3936
- Abstract
- Virtually all manufacturing processes are subject to variability, an inherent characteristic of most production processes. No two parts can ever be exactly the same in terms of their dimensions. For machining processes such as drilling, milling, and lathing, overall variability is caused in part by machine tools, tooling, fixtures and workpiece material. Since variability, which can be accumulated from tolerance stacking, can result in defective parts the number of parts produced in a batch is limited. When there are too many parts in a batch, the likelihood of producing all acceptable parts in a batch decreases due to the increased tolerances. On the other hand, too small a batch size incurs an increase of manufacturing costs due to frequent setups and tool replacements, whereas the likelihood of acceptable parts increases. To address this challenge, we present a stochastic model for determining the optimal batch size where we consider part-to-part variation in terms of tool wear, which tends to be proportional to batch size. In this paper, a mathematical model is constructed based on the assumption that the process used for producing preceding parts affects the state of subsequent parts in a probabilistic manner.
- URI
- https://scholarworks.unist.ac.kr/handle/201301/8382
- URL
- http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=70449670634
- DOI
- 10.1080/00207540701810778
- ISSN
- 0020-7543
- Appears in Collections:
- MEN_Journal Papers
- Files in This Item:
- There are no files associated with this item.
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.