File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

석상일

Seok, Sang Il
Laboratory for Energy Harvesting Materials and Systems
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Ultrafine SnO2 colloids with enhanced interface quality for high-efficiency perovskite solar cells

Author(s)
Paik, Min JaeKim, Yu YoungKim, JongbeomPark, JaewangSeok, Sang Il
Issued Date
2024-07
DOI
10.1016/j.joule.2024.04.010
URI
https://scholarworks.unist.ac.kr/handle/201301/83455
Citation
JOULE, v.8, no.7, pp.2073 - 2086
Abstract
Perovskite solar cells (PSCs) with a certified power conversion efficiency (PCE) exceeding 25% commonly employ SnO 2 electron transport layers (ETLs) fabricated via chemical bath deposition (CBD) or commercial colloids. However, CBD is time consuming, while commercial colloids lack precise control over properties crucial for high PCE. Developing a superior SnO 2 colloidal solution with ultrafine particles, minimal defects, and homogeneous dispersibility for low-defect interfaces with perovskite is essential. We present a method to synthesize SnO 2 colloids in H 2 O 2 solution, yielding 4-6 nm particles with reduced oxygen vacancies. Sonication and formamidinium chloride (FACl) addition promote defect-free interface formation with perovskites. Utilizing SnO 2-FACl ETLs, we achieve high-performance PSCs with a remarkable PCE of 26.05% (certified 25.54% ). This success stems from reduced defects in the ETL and favorable charge transport with the perovskite film, offering a promising route for manufacturing high-quality SnO 2 ETLs crucial for highly efficient PSCs, with significant commercialization potential.
Publisher
CELL PRESS
ISSN
2542-4351
Keyword
MECHANISMLAYERSEXTRACTIONSENSITIVITY FACTORSPASSIVATION

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.