File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김영대

Kim, Youngdae
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Adaptively refined dynamic program for linear spline regression

Author(s)
Goldberg, NoamKim, YoungdaeLeyffer, SvenVeselka, Thomas D.
Issued Date
2014-07
DOI
10.1007/s10589-014-9647-y
URI
https://scholarworks.unist.ac.kr/handle/201301/83401
Citation
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, v.58, no.3, pp.523 - 541
Abstract
The linear spline regression problem is to determine a piecewise linear function for estimating a set of given points while minimizing a given measure of misfit or error. This is a classical problem in computational statistics and operations research; dynamic programming was proposed as a solution technique more than 40 years ago by Bellman and Roth (J Am Stat Assoc 64:1079-1084, 1969). The algorithm requires a discretization of the solution space to define a grid of candidate breakpoints. This paper proposes an adaptive refinement scheme for the grid of candidate breakpoints in order to allow the dynamic programming method to scale for larger instances of the problem. We evaluate the quality of solutions found on small instances compared with optimal solutions determined by a novel integer programming formulation of the problem. We also consider a generalization of the linear spline regression problem to fit multiple curves that share breakpoint horizontal coordinates, and we extend our method to solve the generalized problem. Computational experiments verify that our nonuniform grid construction schemes are useful for computing high-quality solutions for both the single-curve and two-curve linear spline regression problem.
Publisher
SPRINGER
ISSN
0926-6003
Keyword (Author)
Change point detectionDynamic programmingPiecewise regressionLeast squaresMixed-integer programming

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.