File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정하영

Chung, Hayoung
Computational Structural Mechanics and Design Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 117034 -
dc.citation.title COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING -
dc.citation.volume 427 -
dc.contributor.author Ren, Xiaoqiang -
dc.contributor.author Du, Zongliang -
dc.contributor.author Chung, Hayoung -
dc.contributor.author Tang, Shan -
dc.contributor.author Guo, Yunhang -
dc.contributor.author Chen, Biaosong -
dc.contributor.author Guo, Xu -
dc.date.accessioned 2024-06-20T13:35:08Z -
dc.date.available 2024-06-20T13:35:08Z -
dc.date.created 2024-06-17 -
dc.date.issued 2024-07 -
dc.description.abstract Tension-compression asymmetry, thermal -mechanical coupling, and finite deformation effects are common characters of many biological materials and engineering structures. By introducing different elastic constants under tension and compression, a thermo-mechanical bi-modulus constitutive model and a subsequent efficient computational analysis framework are proposed in the finite deformation regime. After we validate the convergence, accuracy, and robustness of the algorithm, we investigate the mechanical behavior of human brain tissue under varying intracranial pressure and temperature. Furthermore, with the use of the proposed bi-modulus thermoelasticity model, the classic tension -field theory is regularized, and wrinkling region and its evolution in membranes under thermomechanical loads can be effectively predicted, as an alternative to the computationally intensive post -buckling analyses. -
dc.identifier.bibliographicCitation COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, v.427, pp.117034 -
dc.identifier.doi 10.1016/j.cma.2024.117034 -
dc.identifier.issn 0045-7825 -
dc.identifier.scopusid 2-s2.0-85192442148 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/83003 -
dc.identifier.wosid 001241221100001 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE SA -
dc.title Finite deformation analysis of bi-modulus thermoelastic structures and its in of membranes -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics -
dc.relation.journalResearchArea Engineering; Mathematics; Mechanics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Finite deformation -
dc.subject.keywordAuthor Newton-Raphson algorithm -
dc.subject.keywordAuthor Wrinkling prediction -
dc.subject.keywordAuthor Tension-compression asymmetry -
dc.subject.keywordAuthor Thermal-mechanical coupling -
dc.subject.keywordPlus TENSION -
dc.subject.keywordPlus COMPRESSION -
dc.subject.keywordPlus MODEL -
dc.subject.keywordPlus NUMERICAL-METHOD -
dc.subject.keywordPlus ELEMENT-ANALYSIS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.