File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

채한기

Chae, Han Gi
Polymer nano-composites and Carbon Fiber Laboratory
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 26589 -
dc.citation.number 20 -
dc.citation.startPage 26580 -
dc.citation.title ACS APPLIED MATERIALS & INTERFACES -
dc.citation.volume 16 -
dc.contributor.author Lee, Jung-Eun -
dc.contributor.author Jeon, Woo Cheol -
dc.contributor.author Kim, Yea Eun -
dc.contributor.author Lee, Ga-Hyeun -
dc.contributor.author Kim, Juyoung -
dc.contributor.author Kim, Min Jeong -
dc.contributor.author Lee, Seung Min -
dc.contributor.author Kweon, Seong Hyeon -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Chae, Han Gi -
dc.date.accessioned 2024-05-13T11:05:09Z -
dc.date.available 2024-05-13T11:05:09Z -
dc.date.created 2024-05-12 -
dc.date.issued 2024-05 -
dc.description.abstract Cellulose nanocrystals (CNCs) are currently of great interest for many applications, such as energy storage and nanocomposites, because of their natural abundance. A number of carbonization studies have reported abnormal graphitization behavior of CNCs, although cellulose is generally known as a precursor for hard carbon (nongraphitizable carbon). Herein, we report a spray-freeze-drying (SFD) method for CNCs and a subsequent carbonization study to ascertain the difference in the structural development between the amorphous and crystalline phases. The morphological observation by high-resolution transmission electron microscopy of the carbonized SFD-CNC clearly shows that the amorphous and crystalline phases of CNC are attributed to the formation of hard and soft carbon, respectively. The results of a reactive molecular dynamics (RMD) study also show that the amorphous cellulose phase leads to the formation of fewer carbon ring structures, indicative of hard carbon. In contrast, the pristine crystalline cellulose phase has a higher density and thermal stability, resulting in limited molecular relaxation and the formation of a highly crystalline graphitic structure (soft carbon). -
dc.identifier.bibliographicCitation ACS APPLIED MATERIALS & INTERFACES, v.16, no.20, pp.26580 - 26589 -
dc.identifier.doi 10.1021/acsami.4c04015 -
dc.identifier.issn 1944-8244 -
dc.identifier.scopusid 2-s2.0-85192852498 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/82545 -
dc.identifier.wosid 001225327400001 -
dc.language 영어 -
dc.publisher American Chemical Society -
dc.title Abnormally High Graphitic Crystallization of Cellulose Nanocrystals -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology;Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Science & Technology - Other Topics;Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor softcarbon -
dc.subject.keywordAuthor cellulose nanocrystals (CNCs) -
dc.subject.keywordAuthor precursor -
dc.subject.keywordAuthor hard carbon -
dc.subject.keywordAuthor spray-freeze-drying -
dc.subject.keywordAuthor reactive molecular dynamics (RMD) -
dc.subject.keywordPlus MOLECULAR-DYNAMICS -
dc.subject.keywordPlus CARBON-FIBERS -
dc.subject.keywordPlus X-RAY -
dc.subject.keywordPlus CARBONIZATION -
dc.subject.keywordPlus PYROLYSIS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.