File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.title NATURE -
dc.contributor.author Lyu, Bosai -
dc.contributor.author Chen, Jiajun -
dc.contributor.author Wang, Sen -
dc.contributor.author Lou, Shuo -
dc.contributor.author Shen, Peiyue -
dc.contributor.author Xie, Jingxu -
dc.contributor.author Qiu, Lu -
dc.contributor.author Mitchell, Izaac -
dc.contributor.author Li, Can -
dc.contributor.author Hu, Cheng -
dc.contributor.author Zhou, Xianliang -
dc.contributor.author Watanabe, Kenji -
dc.contributor.author Taniguchi, Takashi -
dc.contributor.author Wang, Xiaoqun -
dc.contributor.author Jia, Jinfeng -
dc.contributor.author Liang, Qi -
dc.contributor.author Chen, Guorui -
dc.contributor.author Li, Tingxin -
dc.contributor.author Wang, Shiyong -
dc.contributor.author Ouyang, Wengen -
dc.contributor.author Hod, Oded -
dc.contributor.author Ding, Feng -
dc.contributor.author Urbakh, Michael -
dc.contributor.author Shi, Zhiwen -
dc.date.accessioned 2024-05-03T10:35:29Z -
dc.date.available 2024-05-03T10:35:29Z -
dc.date.created 2024-04-19 -
dc.date.issued 2024-03 -
dc.description.abstract Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices(1-4). However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA '-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm(2) V-1 s(-1) and on-off ratios of up to 10(6). This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials. -
dc.identifier.bibliographicCitation NATURE -
dc.identifier.doi 10.1038/s41586-024-07243-0 -
dc.identifier.issn 0028-0836 -
dc.identifier.scopusid 2-s2.0-85188814887 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/82299 -
dc.identifier.wosid 001194894400004 -
dc.language 영어 -
dc.publisher NATURE PORTFOLIO -
dc.title Graphene nanoribbons grown in hBN stacks for high-performance electronics -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus HEXAGONAL BORON-NITRIDE -
dc.subject.keywordPlus TRANSPORT -
dc.subject.keywordPlus EDGES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.