File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정하영

Chung, Hayoung
Computational Structural Mechanics and Design Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 109924 -
dc.citation.title ENGINEERING FRACTURE MECHANICS -
dc.citation.volume 298 -
dc.contributor.author Lee, Wonseok -
dc.contributor.author Yoo, Taewoo -
dc.contributor.author Baek, Kyungmin -
dc.contributor.author Cho, Maenghyo -
dc.contributor.author Chung, Hayoung -
dc.contributor.author Shin, Hyunseong -
dc.contributor.author Lee, Yun Seog -
dc.date.accessioned 2024-04-11T10:35:12Z -
dc.date.available 2024-04-11T10:35:12Z -
dc.date.created 2024-04-09 -
dc.date.issued 2024-03 -
dc.description.abstract We propose a multiscale framework to predict the fracture toughness enhancement in polymer nanocomposites at various strain rates considering the interfacial debonding and subsequent plastic yielding of the matrix mechanisms. The elasto-plastic behavior of pure polymer and polymer nanocomposite is characterized at different strain rates via molecular dynamics simulation, and the fracture toughness enhancement are computed using a multiscale bridging approach via the finite element simulation and linear elastic fracture mechanics. The predicted results show that the toughness enhancement is affected by the strain rate and interfacial characteristics, and that it agrees well with the experimental results. These findings is expected to provide guidelines for predicting the fracture toughness of nanocomposites under various strain rate conditions, as well as insights into the customization of interfacial characteristics for the target toughness. -
dc.identifier.bibliographicCitation ENGINEERING FRACTURE MECHANICS, v.298, pp.109924 -
dc.identifier.doi 10.1016/j.engfracmech.2024.109924 -
dc.identifier.issn 0013-7944 -
dc.identifier.scopusid 2-s2.0-85184660744 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/81975 -
dc.identifier.wosid 001181391500001 -
dc.language 영어 -
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD -
dc.title Strain rate effects on fracture toughness of polymer nanocomposites: A multiscale study -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Mechanics -
dc.relation.journalResearchArea Mechanics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Polymer-matrix composites (PMCs) -
dc.subject.keywordAuthor Multiscale modeling -
dc.subject.keywordAuthor Fracture toughness -
dc.subject.keywordAuthor Debonding -
dc.subject.keywordAuthor Toughness -
dc.subject.keywordPlus BEHAVIOR -
dc.subject.keywordPlus MATRIX -
dc.subject.keywordPlus DEFORMATION -
dc.subject.keywordPlus ENHANCEMENT -
dc.subject.keywordPlus CROSS-LINK DENSITY -
dc.subject.keywordPlus TOUGHENING MECHANISMS -
dc.subject.keywordPlus SILICA NANOPARTICLES -
dc.subject.keywordPlus CARBON NANOTUBES -
dc.subject.keywordPlus IMPACT FRACTURE -
dc.subject.keywordPlus EPOXY POLYMERS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.