File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2943 -
dc.citation.number 3 -
dc.citation.startPage 2933 -
dc.citation.title CHEMISTRY OF MATERIALS -
dc.citation.volume 36 -
dc.contributor.author Lee, Jinsil -
dc.contributor.author Shin, Yonghun -
dc.contributor.author Kim, Taeyun -
dc.contributor.author Choi, Wooseon -
dc.contributor.author Jung, Min-Hyoung -
dc.contributor.author Kim, Young-Min -
dc.contributor.author Yoon, Kyung Joong -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Lee, Donghwa -
dc.contributor.author Joo, Jong Hoon -
dc.date.accessioned 2024-04-02T09:35:08Z -
dc.date.available 2024-04-02T09:35:08Z -
dc.date.created 2024-03-29 -
dc.date.issued 2024-03 -
dc.description.abstract Perovskite-based materials are typically used as electrodes in solid oxide cells (SOCs) owing to their high catalytic activity in oxygen exchange reactions. The degradation of typical SOCs is a well-known phenomenon that is primarily attributed to the A-site cation redistribution within perovskite-based electrodes at elevated operating temperatures. To date, investigations of the degradation and stability of perovskite electrodes have predominantly focused on assessing thin-film electrodes under an open-circuit voltage. This study proposes a detailed degradation mechanism of electrodes based on bulk-dense materials under the operating conditions of an actual solid oxide fuel cell. Our findings revealed that La0.6Sr0.4Co0.2Fe0.8O3-delta is decomposed into SrO, spinel phase ((CoFe)(3)O-4), and La-rich perovskite in the subsurface region under cathodic bias conditions. Additionally, the results of this study indicate that the phase decomposition associated with elements in the B-site must be considered to improve the enhancement of the stability and oxygen reduction reaction activity. -
dc.identifier.bibliographicCitation CHEMISTRY OF MATERIALS, v.36, no.3, pp.2933 - 2943 -
dc.identifier.doi 10.1021/acs.chemmater.3c03283 -
dc.identifier.issn 0897-4756 -
dc.identifier.scopusid 2-s2.0-85187576918 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/81931 -
dc.identifier.wosid 001184219500001 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Phase Stability of Perovskite Oxide Electrodes under Operating Condition in Solid Oxide Fuel Cell -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus THIN-FILM ELECTRODES -
dc.subject.keywordPlus OXYGEN REDUCTION -
dc.subject.keywordPlus HIGH-PERFORMANCE -
dc.subject.keywordPlus SURFACE MODIFICATION -
dc.subject.keywordPlus DOPANT SEGREGATION -
dc.subject.keywordPlus CATHODE MATERIALS -
dc.subject.keywordPlus LA0.6SR0.4CO0.2FE0.8O3-DELTA -
dc.subject.keywordPlus INTERFACE -
dc.subject.keywordPlus TRANSPORT -
dc.subject.keywordPlus EXCHANGE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.