File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이승걸

Lee, Seung Geol
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 4 -
dc.citation.startPage 043111 -
dc.citation.title JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY -
dc.citation.volume 3 -
dc.contributor.author Brunello, Giuseppe F. -
dc.contributor.author Mateker, William R. -
dc.contributor.author Lee, Seung Geol -
dc.contributor.author Choi, Ji Il -
dc.contributor.author Jang, Seung Soon -
dc.date.accessioned 2024-03-28T16:35:11Z -
dc.date.available 2024-03-28T16:35:11Z -
dc.date.created 2024-03-28 -
dc.date.issued 2011-07 -
dc.description.abstract The effects of temperature on hydrated sulfonated poly(ether ether ketone) are studied using molecular dynamics. Three different temperature conditions (298 K.15 K, 323.15 K, and 353.15 K) with two different water contents (10 wt. % and 20 wt. %) are simulated. Analyzing the pair correlation functions, it is found that there is limited temperature effect on the distribution and solvation of the sulfonate groups. The structure factor analysis shows that the temperature dependence of the nanophase-segregated morphology is not significant in the simulated temperature range. On the contrary, the structure factors S(q) at similar to 30 angstrom (q = similar to 0.2 angstrom(-1)) and similar to 13 angstrom (q = similar to 0.5 angstrom(-1)) clearly increase with water content, indicating that the development of water channels is mostly affected by the water content. Within such water phase in the nanophase-segregated structure, the internal structure of water phase becomes more developed with decreasing temperature and increasing water content. By analyzing the mean square displacement of the water molecules, it is also found that self-diffusion of water is enhanced with the increasing temperature. From the observation that the activation energies calculated from such temperature dependency are very similar (E-a = 25.7 kJ/mol and E-a = 24.9 kJ/mol for 10 wt. % and 20 wt. %, respectively), it is inferred that the extent of the structural change in the water phase as a function of temperature is very similar between the 10 wt. % water content and the 20 wt. % water content. Compared to the bulk water (13.2 kJ/mol) and the water in Nafion (16.7-18.9 kJ/mol), it is confirmed that more nanophase-segregation enhances water transport through the membrane. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3608912] -
dc.identifier.bibliographicCitation JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, v.3, no.4, pp.043111 -
dc.identifier.doi 10.1063/1.3608912 -
dc.identifier.issn 1941-7012 -
dc.identifier.scopusid 2-s2.0-80052474707 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/81880 -
dc.identifier.wosid 000294865700014 -
dc.language 영어 -
dc.publisher AMER INST PHYSICS -
dc.title Effect of temperature on structure and water transport of hydrated sulfonated poly(ether ether ketone): A molecular dynamics simulation approach -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Green & Sustainable Science & Technology; Energy & Fuels -
dc.relation.journalResearchArea Science & Technology - Other Topics; Energy & Fuels -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor crystal morphology -
dc.subject.keywordAuthor molecular dynamics method -
dc.subject.keywordAuthor nanostructured materials -
dc.subject.keywordAuthor proton exchange membrane fuel cells -
dc.subject.keywordAuthor self-diffusion -
dc.subject.keywordAuthor solvation -
dc.subject.keywordPlus NANOPHASE-SEGREGATION -
dc.subject.keywordPlus ATOMISTIC SIMULATIONS -
dc.subject.keywordPlus SELF-DIFFUSION -
dc.subject.keywordPlus POLYMER MEMBRANES -
dc.subject.keywordPlus PROTON TRANSPORT -
dc.subject.keywordPlus NAFION MEMBRANE -
dc.subject.keywordPlus HYDRONIUM IONS -
dc.subject.keywordPlus MORPHOLOGY -
dc.subject.keywordPlus MONOLAYERS -
dc.subject.keywordPlus INTERFACE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.