File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이승걸

Lee, Seung Geol
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 13013 -
dc.citation.number 26 -
dc.citation.startPage 13004 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY A -
dc.citation.volume 8 -
dc.contributor.author Doo, Gisu -
dc.contributor.author Yuk, Seongmin -
dc.contributor.author Lee, Ji Hye -
dc.contributor.author Choi, Sungyu -
dc.contributor.author Lee, Dong-Hyun -
dc.contributor.author Lee, Dong Wook -
dc.contributor.author Hyun, Jonghyun -
dc.contributor.author Kwon, Sung Hyun -
dc.contributor.author Lee, Seung Geol -
dc.contributor.author Kim, Hee-Tak -
dc.date.accessioned 2024-03-20T15:05:10Z -
dc.date.available 2024-03-20T15:05:10Z -
dc.date.created 2024-03-20 -
dc.date.issued 2020-07 -
dc.description.abstract Ionomer films even only a few nanometers thick in the catalyst layer of a polymer electrolyte membrane fuel cell are detrimental to the power performance at low Pt loadings due to their large oxygen transport resistance. Therefore, removing the ionomer films on the Pt surface for oxygen transport while preserving them on the carbon surface for proton transport can be an ideal ionomer distribution. Herein, we achieve ionomer-lean Pt surfaces by masking the Pt nanoparticles of the Pt/C catalyst with an alkanethiol. Due to the weakening of the ionomer/Pt interaction by the molecular mask, a low population of ionomers on the Pt surface is achieved while preserving the fast proton transport in the catalyst layer. The alkanethiol is then electrochemically removed from the catalyst layer, recovering the catalytic activity of the Pt. Electrochemical analyses showed a reduced oxygen transport resistance through the ionomer film and a consequent enhancement of the power performance. This molecular masking strategy marks the beginning of the nano-scale control of ionomer distribution in the development of advanced fuel cells. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY A, v.8, no.26, pp.13004 - 13013 -
dc.identifier.doi 10.1039/c9ta14002f -
dc.identifier.issn 2050-7488 -
dc.identifier.scopusid 2-s2.0-85087587420 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/81723 -
dc.identifier.wosid 000546391600050 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Nano-scale control of the ionomer distribution by molecular masking of the Pt surface in PEMFCs -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus OXYGEN REDUCTION REACTION -
dc.subject.keywordPlus CATALYST LAYERS -
dc.subject.keywordPlus TRANSPORT RESISTANCE -
dc.subject.keywordPlus DIFFUSION RESISTANCE -
dc.subject.keywordPlus HYDROGEN OXIDATION -
dc.subject.keywordPlus FUEL-CELLS -
dc.subject.keywordPlus PLATINUM -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus ELECTRODES -
dc.subject.keywordPlus NANOPARTICLES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.