File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

진호

Jin, Ho
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Preparation of Multilayered CdSe Quantum Dot Sensitizers by Electrostatic Layer-by-Layer Assembly and a Series of Post-treatments toward Efficient Quantum Dot-Sensitized Mesoporous TiO2 Solar Cells

Author(s)
Jin, HoChoi, SukyungVelu, RanganathanKim, SungjeeLee, Hyo Joong
Issued Date
2012-03
DOI
10.1021/la202892h
URI
https://scholarworks.unist.ac.kr/handle/201301/81548
Citation
LANGMUIR, v.28, no.12, pp.5417 - 5426
Abstract
A multilayer of CdSe quantum dots (QDs) was prepared on the mesoporous surface of a nanoparticulate TiO2 film by a layer-by-layer (LBL) assembly using the electrostatic interaction of the oppositely charged QD surface for application as a sensitizer in QD-sensitized TiO2 solar cells. To maximize the absorption of incident light and the generation of excitons by CdSe QDs within a fixed thickness of TiO2 film, the experimental conditions of QD deposition were optimized by controlling the concentration of salt added into the QD-dissolved solutions and repeating the LBL deposition a few times. A proper concentration of salt was found to be critical in providing a deep penetration of QDs into the mesopore, thus leading to a dense and uniform distribution throughout the whole TiO2 matrix while anchoring the oppositely charged QDs alternately in a controllable way. A series of post-treatments with (1) CdCl2, (2) thermal annealing, and (3) ZnS-coating was found to be very critical in improving the overall photovoltaic properties, presumably through a better connection between QDs, effective passivation of QD's surface, and a high impedance of recombination, which were proved by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS) experiments. With a proper post-treatment of multilayered QDs as a sensitizer, the overall power conversion efficiency in the CdSe QD-sensitized TiO2 solar cells could reach 1.9% under standard illumination condition of simulated AM 1.5G (100 mW/cm(2)).
Publisher
AMER CHEMICAL SOC
ISSN
0743-7463
Keyword
SEMICONDUCTOR NANOCRYSTALSZERO CHARGEGROWTHCDTERECRYSTALLIZATIONPHOTOSTABILITYPERFORMANCEELECTRODESINJECTIONENERGY

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.