dc.citation.endPage |
60 |
- |
dc.citation.number |
1 |
- |
dc.citation.startPage |
43 |
- |
dc.citation.title |
OSAKA JOURNAL OF MATHEMATICS |
- |
dc.citation.volume |
60 |
- |
dc.contributor.author |
Jeong, Keunyoung |
- |
dc.contributor.author |
Park, Junyeong |
- |
dc.contributor.author |
Yhee, Donggeon |
- |
dc.date.accessioned |
2024-02-15T17:35:14Z |
- |
dc.date.available |
2024-02-15T17:35:14Z |
- |
dc.date.created |
2024-02-15 |
- |
dc.date.issued |
2023-01 |
- |
dc.description.abstract |
In this paper, we study the algebraic rank and the analytic rank of the Jacobian of hyperelliptic curves y2 = x5 + m2 for integers m. Namely, we first provide a condition on m that gives a bound of the size of Selmer group and then we provide a condition on m that makes L-functions non-vanishing. As a consequence, we construct a Jacobian that satisfies the rank part of the Birch–Swinnerton-Dyer conjecture. |
- |
dc.identifier.bibliographicCitation |
OSAKA JOURNAL OF MATHEMATICS, v.60, no.1, pp.43 - 60 |
- |
dc.identifier.issn |
0030-6126 |
- |
dc.identifier.scopusid |
2-s2.0-85146514874 |
- |
dc.identifier.uri |
https://scholarworks.unist.ac.kr/handle/201301/81407 |
- |
dc.identifier.wosid |
000976153500004 |
- |
dc.language |
영어 |
- |
dc.publisher |
Osaka Daigaku Shigakkai |
- |
dc.title |
ON THE JACOBIAN OF A FAMILY OF HYPERELLIPTIC CURVES |
- |
dc.type |
Article |
- |
dc.description.isOpenAccess |
FALSE |
- |
dc.type.docType |
Article |
- |
dc.description.journalRegisteredClass |
scie |
- |
dc.description.journalRegisteredClass |
scopus |
- |