File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김병조

Kim, Byungjo
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 111620 -
dc.citation.title COMPUTATIONAL MATERIALS SCIENCE -
dc.citation.volume 213 -
dc.contributor.author Kim, Sangtae -
dc.contributor.author An, Hyungmin -
dc.contributor.author Oh, Sangmin -
dc.contributor.author Jung, Jisu -
dc.contributor.author Kim, Byungjo -
dc.contributor.author Nam, Sang Ki -
dc.contributor.author Han, Seungwu -
dc.date.accessioned 2024-02-05T10:35:10Z -
dc.date.available 2024-02-05T10:35:10Z -
dc.date.created 2024-02-05 -
dc.date.issued 2022-10 -
dc.description.abstract The atomic layer deposition (ALD) process of TiN thin films is widely used in microelectronics, but the detailed growth mechanism is still elusive at the atomistic level. In the present computational study, we carry out kinetic Monte Carlo (kMC) simulations on the ALD process using TiCl4 and NH3 precursors. Based on the on-lattice model, we sort out key reactions relevant for the ALD process such as adsorption/desorption of precursors, generation of surface Cl atoms, and evolution of free HCl and Cl2 molecules. The reaction energies considering local environments are calculated at the level of density functional theory (DFT) while the activation barriers are linearly fitted to sampled cases among distinct reaction families. The resulting kMC model produces the temperature-dependent growth rates and the amounts of Cl residues in reasonable agreement with experiments. The detailed growth pathway is discussed based on the simulation results, which underscores the critical role of surface Cl atoms in the ALD process by generating HCl gas molecules. By revealing the atomistic mechanisms in the TiN-ALD process, the present work would help optimize material properties of TiN thin films. -
dc.identifier.bibliographicCitation COMPUTATIONAL MATERIALS SCIENCE, v.213, pp.111620 -
dc.identifier.doi 10.1016/j.commatsci.2022.111620 -
dc.identifier.issn 0927-0256 -
dc.identifier.scopusid 2-s2.0-85134614657 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/81289 -
dc.identifier.wosid 000830304800007 -
dc.language 영어 -
dc.publisher ELSEVIER -
dc.title Atomistic kinetic Monte Carlo simulation on atomic layer deposition of TiN thin film -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Titanium nitride -
dc.subject.keywordAuthor Atomic layer deposition -
dc.subject.keywordAuthor Kinetic Monte Carlo simulation -
dc.subject.keywordAuthor Density functional theory -
dc.subject.keywordPlus CHEMICAL-VAPOR-DEPOSITION -
dc.subject.keywordPlus TOTAL-ENERGY CALCULATIONS -
dc.subject.keywordPlus ELASTIC BAND METHOD -
dc.subject.keywordPlus TITANIUM NITRIDE -
dc.subject.keywordPlus DIFFUSION BARRIER -
dc.subject.keywordPlus SURFACE-REACTIONS -
dc.subject.keywordPlus GROWTH -
dc.subject.keywordPlus ALD -
dc.subject.keywordPlus PRESSURE -
dc.subject.keywordPlus SILICON -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.