File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

유춘상

Yoo, Chun Sang
Combustion and Propulsion Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Direct numerical simulations of the ignition of temporally evolving n-heptane jet under RCCI combustion-relevant conditions

Author(s)
Yu, Gwang HyeonLuong, Minh BauChung, Suk HoYoo, Chun Sang
Issued Date
2019-07-03
URI
https://scholarworks.unist.ac.kr/handle/201301/79538
Citation
12th Asia-Pacific Conference on Combustion, ASPACC 2019
Abstract
The ignition characteristics of a temporally evolving n-heptane jet under reactivity controlled compression ignition (RCCI) conditions are investigated using 2-D direct numerical simulation with a 116-species PRF reduced mechanism. For RCCI combustion, n-heptane and iso-octane are selected as two different fuels that have opposite ignition characteristics. In real engine, relatively-low reactivity fuel is delivered by port-fuel injection and relatively-high reactivity fuel is directly injected. Thus, the ignition characteristics of temporally evolving jet can be investigated with different jet velocity, U0. It is found that the first-stage ignition kernels occur within n-heptane jet near the mixing layer and develop into low temperature flame, propagating into relatively fuel-rich mixture of n-heptane jet. The high temperature ignition kernel is also formed in the nheptane jet, and then rapidly propagate into both relatively fuel-rich n-heptane jet and fuel-lean iso-octane/air mixture. Finally, the end-gas autoignition occurs. It is also found that the first- and second-stage ignitions occur quickly with increasing U0; the overall combustion is prolonged and the peak of heat release rate is reduced with increasing U0.
Publisher
The Combustion Society of Japan

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.