File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

차채녕

Cha, Chaenyung
Integrative Biomaterials Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1369 -
dc.citation.number 5 -
dc.citation.startPage 1361 -
dc.citation.title BIOMACROMOLECULES -
dc.citation.volume 14 -
dc.contributor.author Schmidt, John J. -
dc.contributor.author Jeong, Jae Hyun -
dc.contributor.author Chan, Vincent -
dc.contributor.author Cha, Chaenyung -
dc.contributor.author Baek, Kwanghyun -
dc.contributor.author Lai, Mei-Hsiu -
dc.contributor.author Bashir, Rashid -
dc.contributor.author Kong, Hyunjoon -
dc.date.accessioned 2023-12-22T04:06:44Z -
dc.date.available 2023-12-22T04:06:44Z -
dc.date.created 2014-10-27 -
dc.date.issued 2013-05 -
dc.description.abstract Many diverse applications utilize hydrogels as carriers, sensors, and actuators, and these applications rely on the refined control of physical properties of the hydrogel, such as elastic modulus and degree of swelling. Often, hydrogel properties are interdependent; for example, when elastic modulus is increased, degree of swelling is decreased. Controlling these inverse dependencies remains a major barrier for broader hydrogel applications. We hypothesized that polymer cross-linkers with varied chain flexibility would allow us to tune the inverse dependency between the elastic modulus and the degree of swelling of the hydrogels. We examined this hypothesis by using alginate and poly(acrylic acid) (PAA) modified with a controlled number of methacrylic groups as model inflexible and flexible cross-linkers, respectively. Interestingly, the polyacrylamide hydrogel crosslinked by the inflexible alginate methacrylates exhibited less dependency between the degree of swelling and the elastic modulus than the hydrogel cross-linked by flexible PAA methacrylates. This critical role of the cross-linker's inflexibility was related to the difference of the degree of hydrophobic association between polymer cross-linkers, as confirmed with pyrene probes added in pregel solutions. Furthermore, hydrogels cross-linked with alginate methacrylates could tune the projection area of adhered cells by solely altering elastic moduli. In contrast, gels cross-linked with PAA methacrylates failed to modulate the cellular adhesion morphology due to a lower, and smaller, elastic modulus range to be controlled. Overall, the results of this study will significantly advance the controllability of hydrogel properties and greatly enhance the performance of hydrogels in various biological applications. -
dc.identifier.bibliographicCitation BIOMACROMOLECULES, v.14, no.5, pp.1361 - 1369 -
dc.identifier.doi 10.1021/bm302004v -
dc.identifier.issn 1525-7797 -
dc.identifier.scopusid 2-s2.0-84877764748 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/7865 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84877764748 -
dc.identifier.wosid 000319034600013 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Tailoring the Dependency between Rigidity and Water Uptake of a Microfabricated Hydrogel with the Conformational Rigidity of a Polymer
Cross-Linker
-
dc.type Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LIGHT-SCATTERING -
dc.subject.keywordPlus DRUG-DELIVERY -
dc.subject.keywordPlus PH SENSORS -
dc.subject.keywordPlus SYSTEMS -
dc.subject.keywordPlus MATRIX -
dc.subject.keywordPlus ACID -
dc.subject.keywordPlus FLUORESCENCE -
dc.subject.keywordPlus DEGRADATION -
dc.subject.keywordPlus STIFFNESS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.